标题 |
CT image denoising using multivariate model and its method noise thresholding in non-subsampled shearlet domain
基于多变量模型的CT图像去噪及其方法非二次采样shearlet域噪声阈值化
相关领域
剪切波
计算机科学
降噪
噪音(视频)
阈值
多元统计
人工智能
图像(数学)
领域(数学分析)
模式识别(心理学)
计算机视觉
数学
机器学习
数学分析
|
网址 |
求助人暂未提供
|
DOI |
暂未提供,该求助的时间将会延长,查看原因?
|
其它 | In today era, computed tomography (CT) is one of the exceptionally proficient crucial devices in medical science for the clinical reason. The consistent improvement and broad utilization of computed tomography in medical science has uplifted the harmfulness of higher dose to the patient. Low radiation dose may prompt expanded noise and artifacts, which can influence the radiologists’ judgment. Therefore, we propose a method based on new shrinkage function in the nonsubsampled shearlet domain (NSST). In the proposed algorithm, method noise on multivariate shrinkage model is utilized viably by using stein's unbiased risk estimate and linear expansion of thresholds (SURE-LET) |
求助人 | |
下载 | 该求助完结已超 24 小时,文件已从服务器自动删除,无法下载。 |
温馨提示:该文献已被科研通 学术中心 收录,前往查看
科研通『学术中心』是文献索引库,收集文献的基本信息(如标题、摘要、期刊、作者、被引量等),不提供下载功能。如需下载文献全文,请通过文献求助获取。
|