标题 |
Q-Learning Based Computation Offloading with Minimizing the Cost in Vehicle Edge Computing
基于Q学习的车辆边缘计算成本最小化计算卸载
相关领域
计算卸载
计算机科学
边缘计算
计算
GSM演进的增强数据速率
人工智能
算法
|
网址 | |
DOI |
暂未提供,该求助的时间将会延长,查看原因?
|
其它 | The advancement of autonomous driving and vehicle networking technologies is continuously spawning new vehicle applications, improving traffic safety and the overall driving experience is a key goal. Yet, this is challenged by the limited computing and storage capacities available on-board. certain computation-heavy tasks miss their deadlines, necessitating the use of edge computing. Vehicle edge (VEC) serves as a potent solution for enhancing vehicular computing capabilities. This paper presents a model for task offloading in vehicular edge computing (VEC).Our approach leverages idle resources in vehicles to support edge computing offloading within a heterogeneous network. To reduce system expenses, |
求助人 | |
下载 | 该求助完结已超 24 小时,文件已从服务器自动删除,无法下载。 |
温馨提示:该文献已被科研通 学术中心 收录,前往查看
科研通『学术中心』是文献索引库,收集文献的基本信息(如标题、摘要、期刊、作者、被引量等),不提供下载功能。如需下载文献全文,请通过文献求助获取。
|