作者
Jiawen Xu,Tong Xing,Jiaolong Li,L. L. Zhang,Feng Gao
摘要
Abstract This study investigated the attenuating effects of dietary creatine nitrate (CrN), a novel form of creatine, on energy expenditure and rapid glycolysis in pectoralis major (PM) muscle of broiler induced by preslaughter transport. A total of 288 Arbor Acres broilers (28-day-old) were randomly assigned into five dietary treatments, including a basal diet or the basal diet supplemented with 600 mg/kg guanidinoacetic acid (GAA), 300, 600, or 900 mg/kg CrN for 14 days, respectively. On the day of transportation, the broilers from basal diet group were divided into two equal groups: one group was transported for 0.5 h (Control group) and the other group was transported for 3 h (T3h group). Meanwhile, the birds from GAA and CrN supplementation groups were transported for 3 h (identified as GAA600, CrN300, CrN600, and CrN900 group, respectively). The results demonstrated that dietary supplementation of GAA or CrN from 28 to 42d of age did not significantly affect the growth performance, carcass traits and textural characteristics (P > 0.05) in muscle of transported broilers. Compared with T3h group, GAA600, CrN600, and CrN900 groups increased the pH45min (P < 0.01), and CrN600, CrN900 groups decreased the cooking loss (P < 0.05) of PM muscle. Meanwhile, the muscle of GAA600, CrN600, and CrN900 groups showed a higher glycogen content (P < 0.01) and a lower lactic acid content (P < 0.01). GAA600 and all CrN treatments enhanced muscle Cr content and reduced AMP/ATP ratio (P < 0.01). In addition, GAA600 and all CrN treatments down-regulated the relative mRNA expression level of LKB1 and AMPKα2 (P < 0.001) and the protein expression of p-AMPKα Thr172 compared with the T3h group (P < 0.01). All CrN treatments showed lower protein expression levels of LKB1 and p-LKB1 Thr189 than those of the T3h group (P < 0.05). In summary, dietary supplementation with GAA and CrN enhanced the content of muscle creatine, and inhibited transport-induced activation of LKB1/AMPK pathway, which is beneficial for delaying rapid muscle glycolysis and improving meat quality.