Multi-Objective Online Ride-Matching

匹配(统计) 计算机科学 数学 统计
作者
Guodong Lyu,Wang Chi Cheung,Chung‐Piaw Teo,Hai Wang
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:54
标识
DOI:10.2139/ssrn.3356823
摘要

Problem Definition: The job of any marketplace is to facilitate the matching of supply with demand in real-time. Success is often measured using various metrics. The challenge is to design matching algorithms to balance the trade-offs among multiple objectives in a stochastic environment, to arrive at a “compromise” solution, which minimizes say the ℓp-norm-based distance function (for some 1 ≤p ≤∞) between the attained performance metrics and the target performances.Methodology/Results: We observe that the sample-average-approximation formulation of this multi-objective stochastic optimization problem can be solved by an online algorithm that uses only gradient information from “historical” (i.e., past) sample information, and not on the current state of the system. The online algorithm relies on a set of weight functions, which are updated adaptively over time, based on real-time tracking of the gaps in attained performance and the performance target. This allows us to recast the online algorithm as a randomized algorithm to solve the original stochastic problem. When the pre-determined performance targets are attainable, our randomized policy achieves the targets with a near-optimal performance guarantee (measured by regret, or deviation away from the optimal performance). When the targets are not attainable, our policy generates a compromise solution to the multi-objective stochastic optimization problem, even when the efficient frontier for this stochastic optimization problem cannot be explicitly characterized a-priori. We implement our model to address a challenge faced by a ride-sourcing platform, that matches passengers and drivers in real-time. Four performance metrics—platform revenue, driver service score, pick-up distance, and number of matched pairs—are simultaneously considered in the design of ride-matching algorithm, without pre-specifying the weight on each performance metric. This mechanism has been extensively tested using synthetic and real data.Managerial Implications: We show that under appropriate conditions, all parties in the ride-sourcing ecosystem, from drivers, passengers, to the platform, can be better off under our compromise matching policy, compared to other popular policies currently in use. In particular, the platform can obtain higher revenue, ensure better drivers (with higher service scores) are assigned more orders, and passengers are more likely to be matched to better drivers (albeit with a slight increase in the waiting time), compared to existing policies that focus on pick-up distance minimization. The ability to balance the conflicting goals in multiple objectives in a stochastic operating environment, has the potential to contribute to the long-term sustainable growth of ride-sourcing platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐智秀发布了新的文献求助10
刚刚
酷酷完成签到,获得积分10
1秒前
wahaha完成签到,获得积分10
6秒前
6秒前
7秒前
Brian完成签到,获得积分10
8秒前
sududa66完成签到,获得积分10
9秒前
小巧采白完成签到,获得积分10
10秒前
852应助科研通管家采纳,获得10
10秒前
佰斯特威应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
佰斯特威应助科研通管家采纳,获得10
10秒前
ceeray23应助科研通管家采纳,获得10
11秒前
小屏呀完成签到,获得积分20
11秒前
YWang发布了新的文献求助10
11秒前
感动白开水完成签到,获得积分10
12秒前
13秒前
17秒前
111完成签到,获得积分10
17秒前
cdercder应助是瓜瓜不采纳,获得10
19秒前
20秒前
旅游家完成签到 ,获得积分10
21秒前
changyongcheng完成签到 ,获得积分10
21秒前
Lucas应助XiuyaRen采纳,获得10
22秒前
共享精神应助彪壮的锦程采纳,获得10
22秒前
111发布了新的文献求助10
23秒前
26秒前
26秒前
qi完成签到,获得积分10
26秒前
fifi发布了新的文献求助10
29秒前
statsli完成签到,获得积分10
30秒前
Ggap1发布了新的文献求助10
30秒前
30秒前
32秒前
自由如风完成签到 ,获得积分10
32秒前
蛋蛋LXD完成签到,获得积分10
33秒前
彪壮的锦程完成签到,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Gay and Lesbian Asia 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760384
求助须知:如何正确求助?哪些是违规求助? 3303873
关于积分的说明 10128131
捐赠科研通 3018129
什么是DOI,文献DOI怎么找? 1657428
邀请新用户注册赠送积分活动 791420
科研通“疑难数据库(出版商)”最低求助积分说明 754279