Chuanqi Pan et al. Neighboring sp-Hybridized Carbon ParticipatedMolecular Oxygen Activation on the Interface of Sub-nanoclusterCuO/Graphdiyne.J. Am. Chem. Soc. 2022
DOl: 10.1021/jacs.1c12772 https://pubs.acs.org/doi/10.1021/jacs.1c12772
[3] Wei X, Yin Z L, Lyu K J, et al. Highly Selective Reduction of CO2 to C2+ Hydrocarbons at Copper/Polyaniline Interfaces[J]. ACS Catalysts, 2020, 10, 4103-4111.
[4] Mao W C, Xie S J, Liu T J, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper[J]. Nature Catalysts, 2020, 3, 478-487.
[5] Zhu S Q, Jiang B, Cai W B, et al. Direct Observation on Reaction Intermediates and the Role of Bicarbonate Anions in CO2 Electrochemical Reduction Reaction on Cu Surfaces[J]. Journal of the American Chemical Society, 2017, 139, 15664-15667.
[6] Miyake H, Okada T, Samjeske G, et al. Formic acid electrooxidation on Pd in acidic solutions studied by surface enhanced infrared absorption spectroscopy[J]. Physical Chemistry Chemical Physics, 2008, 10, 3662-3669.
[7] Wang S Y, Wang M, Han L, et al. Insight into the stability of protein in confined environment through analyzing the structure of water by temperature-dependent near-infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 267, 1386-1425.
[8] Li Z, Yang Y, Yin Z L, et al. Interface-Enhanced Catalytic Selectivity on the C2 Products of CO2 Electroreduction[J]. ACS Catalysis. 2021, 11, 2473−2482.
[9] Xu S F, Dai H C, Zhu S L, et al. A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density[J]. eScience. 2021, 1, 60−68.
[10] Desiraju G R, Steiner T, The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford, 1999.
DOl: 10.1021/jacs.1c12772
https://pubs.acs.org/doi/10.1021/jacs.1c12772
DOI: 10.1038/s41467-022-29103-z
https://doi.org/10.1038/s41467-022-29103-z
[2] 孙世刚, 等. 电化学测量原理和方法 [M]. 厦门: 厦门大学出版社, 2021.
[3] Wei X, Yin Z L, Lyu K J, et al. Highly Selective Reduction of CO2 to C2+ Hydrocarbons at Copper/Polyaniline Interfaces[J]. ACS Catalysts, 2020, 10, 4103-4111.
[4] Mao W C, Xie S J, Liu T J, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper[J]. Nature Catalysts, 2020, 3, 478-487.
[5] Zhu S Q, Jiang B, Cai W B, et al. Direct Observation on Reaction Intermediates and the Role of Bicarbonate Anions in CO2 Electrochemical Reduction Reaction on Cu Surfaces[J]. Journal of the American Chemical Society, 2017, 139, 15664-15667.
[6] Miyake H, Okada T, Samjeske G, et al. Formic acid electrooxidation on Pd in acidic solutions studied by surface enhanced infrared absorption spectroscopy[J]. Physical Chemistry Chemical Physics, 2008, 10, 3662-3669.
[7] Wang S Y, Wang M, Han L, et al. Insight into the stability of protein in confined environment through analyzing the structure of water by temperature-dependent near-infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 267, 1386-1425.
[8] Li Z, Yang Y, Yin Z L, et al. Interface-Enhanced Catalytic Selectivity on the C2 Products of CO2 Electroreduction[J]. ACS Catalysis. 2021, 11, 2473−2482.
[9] Xu S F, Dai H C, Zhu S L, et al. A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density[J]. eScience. 2021, 1, 60−68.
[10] Desiraju G R, Steiner T, The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford, 1999.