Spectral Features for Automatic Text-Independent Speaker Recognition

语音识别 说话人识别 Mel倒谱 计算机科学 判别式 特征提取 特征(语言学) 模式识别(心理学) 人工智能 说话人日记 语言学 哲学
作者
Tomi Kinnunen
摘要

Front-end or feature extractor is the first component in an automatic speaker recognition system. Feature extraction transforms the raw speech signal into a compact but effective representation that is more stable and discriminative than the original signal. Since the front-end is the first component in the chain, the quality of the later components (speaker modeling and pattern matching) is strongly determined by the quality of the front-end. In other words, classification can be at most as accurate as the features. Several feature extraction methods have been proposed, and successfully exploited in the speaker recognition task. However, almost exclusively, the methods are adopted directly from the speech recognition task. This is somewhat ironical, considering the opposite nature of the two tasks. In speech recognition, speaker variability is one of the major error sources, whereas in speaker recognition it is the information that we wish to extract. The mel-frequency cepstral coefficients (MFCC) is the most evident example of a feature set that is extensively used in speaker recognition, but originally developed for speech recognition purposes. When MFCC front-end is used in speaker recognition system, one makes an implicit assumption that the human hearing meachanism is the optimal speaker recognizer. However, this has not been confirmed, and in fact opposite results exist. Although several methods adopted from speech recognition have shown to work well in practise, they are often used as “black boxes” with fixed parameters. It is not understood what kind of information the features capture from the speech signal. Understanding the features at some level requires experience from specific areas such as speech physiology, acoustic phonetics, digital signal processing and statistical pattern recognition. According to the author’s general impression of literature, it seems more and more that currently, at the best we are guessing what is the code in the signal that carries our individuality. This thesis has two main purposes. On the one hand, we attempt to see the feature extraction as a whole, starting from understanding the speech production process, what is known about speaker individuality, and then going
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
zzh319发布了新的文献求助20
3秒前
阿曼尼完成签到 ,获得积分10
4秒前
笑南完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
DH完成签到 ,获得积分10
5秒前
大模型应助zxh采纳,获得10
6秒前
6秒前
顾矜应助像棉花糖的云采纳,获得10
6秒前
6秒前
赵赵a应助paleo-地质采纳,获得20
6秒前
哇哈发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
FashionBoy应助bjb1999采纳,获得10
8秒前
9秒前
CipherSage应助123采纳,获得10
9秒前
明日追忆完成签到 ,获得积分20
11秒前
AC赵先生发布了新的文献求助10
11秒前
dzh完成签到,获得积分10
11秒前
苏打汽水发布了新的文献求助200
12秒前
Q11发布了新的文献求助10
13秒前
13秒前
彭于晏应助yangcj采纳,获得10
14秒前
15秒前
Amon完成签到,获得积分10
15秒前
16秒前
雷总完成签到,获得积分10
17秒前
打打应助sun采纳,获得10
17秒前
17秒前
ppy完成签到,获得积分10
18秒前
18秒前
天天快乐应助Q11采纳,获得10
18秒前
19秒前
20秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157301
求助须知:如何正确求助?哪些是违规求助? 2808735
关于积分的说明 7878261
捐赠科研通 2467077
什么是DOI,文献DOI怎么找? 1313197
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919