The Wee1 Inhibitor MK1775 In Combination With Cytarabine (AraC) Has Potent Activity In AML By Completely Abrogating DNA Damage and Cell Cycle Checkpoint Repair Capacity Via The Mrn/NBS1 Complex

第1周 支票1 DNA修复 雷达51 生物 细胞周期检查点 DNA损伤 细胞周期 癌症研究 综合征如奈梅亨破损综合症 同源重组 细胞周期蛋白依赖激酶1 遗传学 细胞 DNA 共济失调毛细血管扩张
作者
Leena Chaudhuri,James M Bogenberger,Lisa Z. Sproat,James L. Slack,Veena Fauble,Raoul Tibes
出处
期刊:Blood [American Society of Hematology]
卷期号:122 (21): 3831-3831 被引量:1
标识
DOI:10.1182/blood.v122.21.3831.3831
摘要

Abstract Cytarabine (AraC) resistance is a fundamental feature of refractory/relapsed AML. RNA interference (RNAi) screens conducted in our laboratory recently identified WEE1 kinase (WEE1) as one of the top candidate genes and target in leukemias in combination with AraC. WEE1 is a tyrosine kinase belonging to the Ser/Thr family of protein kinases and acts as a negative regulator of mitotic entry by controlling DNA damage (DDR) and cell cycle checkpoint responses. The WEE1 inhibitor MK1775 potently synergizes with AraC ex vivo and in vitro and clinical trials are in preparation. However, the mechanism of action for the anti-leukemic activity of MK1775 with AraC remains unknown. To elucidate genes mediating activity of the combination, we first performed siRNA rescue screens silencing a custom set of 44 genes involved in WEE1 regulation under combined AraC + MK1775 to identify sensitizers and markers of resistance. The MRN (MRE11, Rad51, NBS1) complex and particularly NBS1 were potent modifiers of AraC and MK1775. Focusing on NBS1 since it is proposed to centrally regulate the defense capacity of leukemic cells, we identified that NBS1 phosphorylation at Ser343 (the ATM regulation site) is significantly altered both in cell lines and primary AML samples under combined AraC+MK1775 treatment as compared to single agent MK1775. In parallel, lower phosphorylation of ATMS1981(an autophosphorylation site in response to DNA strand breaks), was observed indicating that the ATM-CHEK1 pathway is not activated under co-treatment. Further Homologous recombination (HR)-mediated repair was compromised by AraC+MK1775 shown by DR-GFP expression vector to measure intracellular HR capacity: post-transfection of the I-SceI nuclease which cleaves non-functioning GFP tandem repeats to form a functional GFP unit, the HR was reduced with the combination. Consistently other HR markers decreased as well. Delayed accumulation of Cyclin A (indicative of S-phase progression) and greater inhibition of phospho-Cdk2Y15in synchronized cells treated with AraC + MK1775 in comparison to controls was observed. In addition the cell cycle was globally dysregulated by slower S-phase kinetics (progression), a completely abrogated G2/M checkpoint/phase as well as de-regulated DNA replication origin formation and firing as evidenced by Cdt1 and Mus81. As a consequence high single and double strand breaks (ɣH2AX) were observed with an increase in phospho-histone H3 in AraC + MK1775 treated cells compared to untreated cells or MK1775 single agent, confirming faster mitotic entry. Changes were followed by massive induction of apoptosis. Since WEE1 is implicated in leukemic stem cell maintenance we examined the long term effects of the combination in colony forming assays. AraC + MK1775 treated leukemic cells obtained from patients with AML were re-plated on Methocult after drug washout and colonies counted after 14 days. While MK1775 as a single agent could reduce colony formation by 4 fold compared to controls and lower dose AraC, co-treatment with low to moderate doses of AraC and MK1775 reduced colony formation by more than 7 fold and to almost zero in some primary specimens. Taken together, these results suggest that leukemia cells co-treated with AraC + MK1775 lost their ability to activate DNA damage and repair pathways mainly by compromising the MRN complex via NBS1 with subsequently reduced HR. The combination (as opposed to single agents) almost complete dysregulated the cell cycle and its checkpoints lead to DNA damage, genomic instability and rapid exit from the cell cycle with cell death via apoptosis. Thus we have molecularly characterized the detailed mechanisms underlying the potent AraC+WEE1 inhibition in AML and describe for the first time a therapeutic combination that has the potential to abrogate the MRN and NBS1 repair capacity which is central for drug resistance in AML. A key implication of our work is to provide a clinical rationale, mechanistic understanding and suggestions for biomarkers to clinically evaluate AraC + MK1775 in patients with AML. Disclosures: No relevant conflicts of interest to declare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干寻芹完成签到,获得积分10
刚刚
1秒前
666完成签到,获得积分10
1秒前
Six_seven发布了新的文献求助10
1秒前
Dawn完成签到,获得积分10
5秒前
浮游应助wrong采纳,获得10
5秒前
酷酷的哲完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
无聊的万天完成签到,获得积分10
7秒前
xiexinyi完成签到,获得积分10
7秒前
8秒前
跳跃的滑板完成签到 ,获得积分10
8秒前
lihaha完成签到 ,获得积分10
9秒前
浮游应助拼搏的璇采纳,获得30
10秒前
dou发布了新的文献求助10
12秒前
123发布了新的文献求助10
13秒前
111发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
Sakura完成签到 ,获得积分10
15秒前
Ava应助碳烤小肥肠采纳,获得10
15秒前
17秒前
17秒前
mortal完成签到,获得积分10
18秒前
18秒前
柯夫子发布了新的文献求助10
19秒前
19秒前
包子完成签到,获得积分10
20秒前
22秒前
22秒前
Ale发布了新的文献求助10
23秒前
CodeCraft应助721采纳,获得10
25秒前
25秒前
白云四季发布了新的文献求助10
27秒前
天行健完成签到,获得积分20
27秒前
存封发布了新的文献求助10
27秒前
二十八画生完成签到 ,获得积分10
28秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425403
求助须知:如何正确求助?哪些是违规求助? 4539499
关于积分的说明 14168184
捐赠科研通 4457031
什么是DOI,文献DOI怎么找? 2444414
邀请新用户注册赠送积分活动 1435321
关于科研通互助平台的介绍 1412740