密度泛函理论
材料科学
化学空间
虚拟筛选
工作(物理)
空格(标点符号)
快离子导体
锂(药物)
计算机科学
分子动力学
固态
纳米技术
电解质
工程物理
计算化学
药物发现
物理化学
热力学
物理
电极
内分泌学
操作系统
化学
生物信息学
生物
医学
作者
Jong Seung Kim,Dong Hyeon Mok,Heejin Kim,Seoin Back
标识
DOI:10.1021/acsami.3c10798
摘要
Discovering new solid electrolytes (SEs) is essential to achieving higher safety and better energy density for all-solid-state lithium batteries. In this work, we report machine learning (ML)-assisted high-throughput virtual screening (HTVS) results to identify new SE materials. This approach expands the chemical space to explore by substituting elements of prototype structures and accelerates an evaluation of properties by applying various ML models. The screening results in a few candidate materials, which are validated by density functional theory calculations and ab initio molecular dynamics simulations. The shortlisted oxysulfide materials satisfy key properties to be successful SEs. The advanced screening method presented in this work will accelerate the discovery of energy materials for related applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI