Mike Zhu,Ilya Prigozhin,P. Mitra,C. Schaake,Richard Scritchfield,E. Bellotti
标识
DOI:10.1117/12.2682181
摘要
Mercury cadmium telluride (HgCdTe or MCT) is the material of choice for infrared avalanche photodetectors (APDs) owing to its desirable qualities including high quantum efficiency and low excess noise factor. Recent advancements in growth techniques have allowed for bandgap engineered MCT films that further enhance the performance of MCT APDs. Monte Carlo has been a widely used method for simulating the multiplication process within avalanche photodiodes (APDs) due to its ability to accurately simulate non-equilibrium transport. In this work, we demonstrate how the gain, excess noise, and bandwidth of bandgap engineered MCT APDs can be accurately modeled in 3-D using Monte Carlo.