CT-based deep learning radiomics and hematological biomarkers in the assessment of pathological complete response to neoadjuvant chemoradiotherapy in patients with esophageal squamous cell carcinoma: A two-center study

医学 无线电技术 完全响应 病态的 食管鳞状细胞癌 放化疗 内科学 基底细胞 肿瘤科 新辅助治疗 食管癌 放射科 病理 放射治疗 癌症 化疗 乳腺癌
作者
Meng Zhang,Yukun Lu,Hongfu Sun,Chuanke Hou,Zichun Zhou,Xiao Liu,Qichao Zhou,Zhenjiang Li,Yong Yin
出处
期刊:Translational Oncology [Elsevier]
卷期号:39: 101804-101804 被引量:12
标识
DOI:10.1016/j.tranon.2023.101804
摘要

To evaluate and validate CT-based models using pre- and posttreatment deep learning radiomics features and hematological biomarkers for assessing esophageal squamous cell carcinoma (ESCC) pathological complete response (pCR) after neoadjuvant chemoradiotherapy (nCRT). This retrospective study recruited patients with biopsy-proven ESCC who underwent nCRT from two Chinese hospitals between May 2017 and May 2022, divided into a training set (hospital I, 111 cases), an internal validation set (hospital I, 47 cases), and an external validation set (hospital II, 33 cases). We used minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) as feature selection methods and three classifiers as model construction methods. The assessment of models was performed using area under the receiver operating characteristic (ROC) curve (AUC) and decision curve analysis (DCA). A total 190 patients were included in our study (60.8 ± 7.08 years, 133 men), and seventy-seven of them (40.5 %) achieved pCR. The logistic regression (LR)-based combined model incorporating neutrophil to lymphocyte ratio, lymphocyte to monocyte ratio, albumin, and radscores performed well both in the internal and external validation sets with AUCs of 0.875 and 0.857 (95 % CI, 0.776–0.964; 0.731–0.984, P <0.05), respectively. DCA demonstrated that nomogram was useful for pCR prediction and produced clinical net benefits. The incorporation of radscores and hematological biomarkers into LR-based model improved pCR prediction after nCRT in ESCC. Enhanced pCR predictability may improve patients selection before surgery, providing clinical application value for the use of active surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
manbo发布了新的文献求助10
刚刚
WYP完成签到,获得积分10
刚刚
无谓完成签到,获得积分10
1秒前
1秒前
青mu发布了新的文献求助10
2秒前
现代的寻雪完成签到,获得积分10
3秒前
immortel发布了新的文献求助10
3秒前
4秒前
科研狗发布了新的文献求助10
4秒前
4秒前
5秒前
汤纪宇完成签到,获得积分10
6秒前
6秒前
6秒前
活力的小小完成签到,获得积分10
7秒前
zhy完成签到,获得积分10
8秒前
一一发布了新的文献求助10
9秒前
shukq发布了新的文献求助10
10秒前
GinT0nic发布了新的文献求助10
10秒前
感动水杯发布了新的文献求助20
10秒前
WASD完成签到,获得积分10
12秒前
liuttinn完成签到,获得积分10
13秒前
嘻嘻完成签到,获得积分10
13秒前
14秒前
小二郎应助口香糖采纳,获得10
14秒前
念梦发布了新的文献求助10
15秒前
聪明夏波发布了新的文献求助30
15秒前
LGH发布了新的文献求助10
17秒前
青葱鱼块完成签到 ,获得积分10
17秒前
17秒前
Hello应助现代的寻雪采纳,获得10
18秒前
19秒前
shukq发布了新的文献求助10
19秒前
鱼鸭梨完成签到,获得积分10
20秒前
ding应助GinT0nic采纳,获得10
20秒前
21秒前
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600893
求助须知:如何正确求助?哪些是违规求助? 4686444
关于积分的说明 14843995
捐赠科研通 4678825
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505973
关于科研通互助平台的介绍 1471241