CT-based deep learning radiomics and hematological biomarkers in the assessment of pathological complete response to neoadjuvant chemoradiotherapy in patients with esophageal squamous cell carcinoma: A two-center study

医学 无线电技术 完全响应 病态的 食管鳞状细胞癌 放化疗 内科学 基底细胞 肿瘤科 新辅助治疗 食管癌 放射科 病理 放射治疗 癌症 化疗 乳腺癌
作者
Meng Zhang,Yukun Lu,Hongfu Sun,Chuanke Hou,Zichun Zhou,Xiao Liu,Qichao Zhou,Zhenjiang Li,Yong Yin
出处
期刊:Translational Oncology [Elsevier BV]
卷期号:39: 101804-101804 被引量:4
标识
DOI:10.1016/j.tranon.2023.101804
摘要

To evaluate and validate CT-based models using pre- and posttreatment deep learning radiomics features and hematological biomarkers for assessing esophageal squamous cell carcinoma (ESCC) pathological complete response (pCR) after neoadjuvant chemoradiotherapy (nCRT). This retrospective study recruited patients with biopsy-proven ESCC who underwent nCRT from two Chinese hospitals between May 2017 and May 2022, divided into a training set (hospital I, 111 cases), an internal validation set (hospital I, 47 cases), and an external validation set (hospital II, 33 cases). We used minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) as feature selection methods and three classifiers as model construction methods. The assessment of models was performed using area under the receiver operating characteristic (ROC) curve (AUC) and decision curve analysis (DCA). A total 190 patients were included in our study (60.8 ± 7.08 years, 133 men), and seventy-seven of them (40.5 %) achieved pCR. The logistic regression (LR)-based combined model incorporating neutrophil to lymphocyte ratio, lymphocyte to monocyte ratio, albumin, and radscores performed well both in the internal and external validation sets with AUCs of 0.875 and 0.857 (95 % CI, 0.776–0.964; 0.731–0.984, P <0.05), respectively. DCA demonstrated that nomogram was useful for pCR prediction and produced clinical net benefits. The incorporation of radscores and hematological biomarkers into LR-based model improved pCR prediction after nCRT in ESCC. Enhanced pCR predictability may improve patients selection before surgery, providing clinical application value for the use of active surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助小明仔采纳,获得10
刚刚
科研鸟发布了新的文献求助10
1秒前
xsz关注了科研通微信公众号
2秒前
DK完成签到,获得积分10
3秒前
燕子发布了新的文献求助30
6秒前
TTT完成签到,获得积分10
7秒前
FashionBoy应助Dora采纳,获得10
7秒前
7秒前
7秒前
9秒前
英雷完成签到,获得积分10
10秒前
深情安青应助小智采纳,获得10
12秒前
个性的汲发布了新的文献求助10
12秒前
WANG发布了新的文献求助10
13秒前
小马甲应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得30
16秒前
yznfly应助科研通管家采纳,获得30
16秒前
16秒前
知许解夏应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得30
17秒前
1111应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
yydragen应助科研通管家采纳,获得30
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
17秒前
wanci应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388