A Deep Learning Pipeline for Assessing Ventricular Volumes from a Cardiac MRI Registry of Patients with Single Ventricle Physiology

组内相关 医学 射血分数 冲程容积 心室 核医学 磁共振成像 心脏病学 分割 内科学 放射科 人工智能 心力衰竭 计算机科学 临床心理学 心理测量学
作者
Tina Yao,Nicole St. Clair,Gabriel F. Miller,Adam L. Dorfman,Mark A. Fogel,Sunil J. Ghelani,Rajesh Krishnamurthy,Christopher Z. Lam,Michael A. Quail,Joshua Robinson,David N. Schidlow,Timothy C. Slesnick,Justin Weigand,Jennifer A. Steeden,Rahul H. Rathod,Vivek Muthurangu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (1) 被引量:1
标识
DOI:10.1148/ryai.230132
摘要

Purpose To develop an end-to-end deep learning (DL) pipeline for automated ventricular segmentation of cardiac MRI data from a multicenter registry of patients with Fontan circulation (Fontan Outcomes Registry Using CMR Examinations [FORCE]). Materials and Methods This retrospective study used 250 cardiac MRI examinations (November 2007–December 2022) from 13 institutions for training, validation, and testing. The pipeline contained three DL models: a classifier to identify short-axis cine stacks and two U-Net 3+ models for image cropping and segmentation. The automated segmentations were evaluated on the test set (n = 50) by using the Dice score. Volumetric and functional metrics derived from DL and ground truth manual segmentations were compared using Bland-Altman and intraclass correlation analysis. The pipeline was further qualitatively evaluated on 475 unseen examinations. Results There were acceptable limits of agreement (LOA) and minimal biases between the ground truth and DL end-diastolic volume (EDV) (bias: −0.6 mL/m2, LOA: −20.6 to 19.5 mL/m2) and end-systolic volume (ESV) (bias: −1.1 mL/m2, LOA: −18.1 to 15.9 mL/m2), with high intraclass correlation coefficients (ICCs > 0.97) and Dice scores (EDV, 0.91 and ESV, 0.86). There was moderate agreement for ventricular mass (bias: −1.9 g/m2, LOA: −17.3 to 13.5 g/m2) and an ICC of 0.94. There was also acceptable agreement for stroke volume (bias: 0.6 mL/m2, LOA: −17.2 to 18.3 mL/m2) and ejection fraction (bias: 0.6%, LOA: −12.2% to 13.4%), with high ICCs (>0.81). The pipeline achieved satisfactory segmentation in 68% of the 475 unseen examinations, while 26% needed minor adjustments, 5% needed major adjustments, and in 0.4%, the cropping model failed. Conclusion The DL pipeline can provide fast standardized segmentation for patients with single ventricle physiology across multiple centers. This pipeline can be applied to all cardiac MRI examinations in the FORCE registry. Keywords: Cardiac, Adults and Pediatrics, MR Imaging, Congenital, Volume Analysis, Segmentation, Quantification Supplemental material is available for this article. © RSNA, 2023

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助asdfzxcv采纳,获得10
刚刚
2秒前
所所应助苹果不平采纳,获得10
2秒前
光亮语梦完成签到 ,获得积分10
3秒前
昭昭完成签到 ,获得积分10
3秒前
科研小白完成签到,获得积分10
4秒前
汉堡包应助麦当当薯条采纳,获得10
4秒前
梁业松完成签到,获得积分20
4秒前
上官若男应助wallonce采纳,获得10
4秒前
5秒前
研友_Lmb15n发布了新的文献求助10
5秒前
小马甲应助可爱的弘文采纳,获得10
6秒前
琦酱完成签到,获得积分10
6秒前
又又s_1发布了新的文献求助10
7秒前
彭于晏应助wave采纳,获得30
7秒前
8秒前
哈哈哈完成签到,获得积分20
8秒前
努力发文章应助肥羊采纳,获得10
8秒前
666发布了新的文献求助10
8秒前
阿熙完成签到,获得积分10
8秒前
8秒前
9秒前
烟花应助打打杀杀的采纳,获得10
9秒前
大舟Austin发布了新的文献求助30
11秒前
搜集达人应助yhx采纳,获得10
11秒前
12秒前
小二郎应助又又s_1采纳,获得10
12秒前
wenwenwang完成签到 ,获得积分10
12秒前
哈哈哈发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
RF完成签到,获得积分10
18秒前
18秒前
苹果不平发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663524
求助须知:如何正确求助?哪些是违规求助? 4850541
关于积分的说明 15104701
捐赠科研通 4821750
什么是DOI,文献DOI怎么找? 2580972
邀请新用户注册赠送积分活动 1535170
关于科研通互助平台的介绍 1493501