A Deep Learning Pipeline for Assessing Ventricular Volumes from a Cardiac MRI Registry of Patients with Single Ventricle Physiology

组内相关 医学 射血分数 冲程容积 心室 核医学 磁共振成像 心脏病学 分割 内科学 放射科 人工智能 心力衰竭 计算机科学 临床心理学 心理测量学
作者
Tina Yao,Nicole St. Clair,Gabriel F. Miller,Adam L. Dorfman,Mark A. Fogel,Sunil J. Ghelani,Rajesh Krishnamurthy,Christopher Z. Lam,Michael A. Quail,Joshua Robinson,David N. Schidlow,Timothy C. Slesnick,Justin Weigand,Jennifer A. Steeden,Rahul H. Rathod,Vivek Muthurangu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (1) 被引量:1
标识
DOI:10.1148/ryai.230132
摘要

Purpose To develop an end-to-end deep learning (DL) pipeline for automated ventricular segmentation of cardiac MRI data from a multicenter registry of patients with Fontan circulation (Fontan Outcomes Registry Using CMR Examinations [FORCE]). Materials and Methods This retrospective study used 250 cardiac MRI examinations (November 2007–December 2022) from 13 institutions for training, validation, and testing. The pipeline contained three DL models: a classifier to identify short-axis cine stacks and two U-Net 3+ models for image cropping and segmentation. The automated segmentations were evaluated on the test set (n = 50) by using the Dice score. Volumetric and functional metrics derived from DL and ground truth manual segmentations were compared using Bland-Altman and intraclass correlation analysis. The pipeline was further qualitatively evaluated on 475 unseen examinations. Results There were acceptable limits of agreement (LOA) and minimal biases between the ground truth and DL end-diastolic volume (EDV) (bias: −0.6 mL/m2, LOA: −20.6 to 19.5 mL/m2) and end-systolic volume (ESV) (bias: −1.1 mL/m2, LOA: −18.1 to 15.9 mL/m2), with high intraclass correlation coefficients (ICCs > 0.97) and Dice scores (EDV, 0.91 and ESV, 0.86). There was moderate agreement for ventricular mass (bias: −1.9 g/m2, LOA: −17.3 to 13.5 g/m2) and an ICC of 0.94. There was also acceptable agreement for stroke volume (bias: 0.6 mL/m2, LOA: −17.2 to 18.3 mL/m2) and ejection fraction (bias: 0.6%, LOA: −12.2% to 13.4%), with high ICCs (>0.81). The pipeline achieved satisfactory segmentation in 68% of the 475 unseen examinations, while 26% needed minor adjustments, 5% needed major adjustments, and in 0.4%, the cropping model failed. Conclusion The DL pipeline can provide fast standardized segmentation for patients with single ventricle physiology across multiple centers. This pipeline can be applied to all cardiac MRI examinations in the FORCE registry. Keywords: Cardiac, Adults and Pediatrics, MR Imaging, Congenital, Volume Analysis, Segmentation, Quantification Supplemental material is available for this article. © RSNA, 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
三跳发布了新的文献求助10
1秒前
Wjk完成签到,获得积分10
3秒前
ZY完成签到 ,获得积分10
4秒前
4秒前
5秒前
赘婿应助hongw1980采纳,获得10
7秒前
繁荣的凝荷完成签到 ,获得积分10
7秒前
大个应助邱丘邱采纳,获得15
8秒前
谷谷发布了新的文献求助10
8秒前
10秒前
孙彩瑛发布了新的文献求助10
11秒前
yuxiaobolab完成签到,获得积分10
15秒前
传奇3应助33采纳,获得10
17秒前
18秒前
22秒前
23秒前
Lv完成签到,获得积分10
23秒前
purplelove发布了新的文献求助10
27秒前
孙彩瑛完成签到,获得积分10
28秒前
酷波er应助争当科研巨匠采纳,获得10
29秒前
30秒前
32秒前
32秒前
34秒前
活泼半凡发布了新的文献求助10
35秒前
小程完成签到 ,获得积分10
35秒前
Yy杨优秀发布了新的文献求助10
36秒前
37秒前
不安毛豆发布了新的文献求助10
37秒前
科研民工发布了新的文献求助10
38秒前
苏silence发布了新的文献求助10
38秒前
40秒前
bkagyin应助流光采纳,获得10
41秒前
oh应助zzznznnn采纳,获得10
42秒前
Cristina2024发布了新的文献求助30
42秒前
LCC完成签到 ,获得积分10
43秒前
comic完成签到,获得积分10
44秒前
44秒前
英姑应助wang佳俊采纳,获得10
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075