A Deep Learning Pipeline for Assessing Ventricular Volumes from a Cardiac MRI Registry of Patients with Single Ventricle Physiology

组内相关 医学 射血分数 冲程容积 心室 核医学 磁共振成像 心脏病学 分割 内科学 放射科 人工智能 心力衰竭 计算机科学 临床心理学 心理测量学
作者
Tina Yao,Nicole St. Clair,Gabriel F. Miller,Adam L. Dorfman,Mark A. Fogel,Sunil J. Ghelani,Rajesh Krishnamurthy,Christopher Z. Lam,Michael A. Quail,Joshua Robinson,David N. Schidlow,Timothy C. Slesnick,Justin Weigand,Jennifer A. Steeden,Rahul H. Rathod,Vivek Muthurangu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (1) 被引量:1
标识
DOI:10.1148/ryai.230132
摘要

Purpose To develop an end-to-end deep learning (DL) pipeline for automated ventricular segmentation of cardiac MRI data from a multicenter registry of patients with Fontan circulation (Fontan Outcomes Registry Using CMR Examinations [FORCE]). Materials and Methods This retrospective study used 250 cardiac MRI examinations (November 2007–December 2022) from 13 institutions for training, validation, and testing. The pipeline contained three DL models: a classifier to identify short-axis cine stacks and two U-Net 3+ models for image cropping and segmentation. The automated segmentations were evaluated on the test set (n = 50) by using the Dice score. Volumetric and functional metrics derived from DL and ground truth manual segmentations were compared using Bland-Altman and intraclass correlation analysis. The pipeline was further qualitatively evaluated on 475 unseen examinations. Results There were acceptable limits of agreement (LOA) and minimal biases between the ground truth and DL end-diastolic volume (EDV) (bias: −0.6 mL/m2, LOA: −20.6 to 19.5 mL/m2) and end-systolic volume (ESV) (bias: −1.1 mL/m2, LOA: −18.1 to 15.9 mL/m2), with high intraclass correlation coefficients (ICCs > 0.97) and Dice scores (EDV, 0.91 and ESV, 0.86). There was moderate agreement for ventricular mass (bias: −1.9 g/m2, LOA: −17.3 to 13.5 g/m2) and an ICC of 0.94. There was also acceptable agreement for stroke volume (bias: 0.6 mL/m2, LOA: −17.2 to 18.3 mL/m2) and ejection fraction (bias: 0.6%, LOA: −12.2% to 13.4%), with high ICCs (>0.81). The pipeline achieved satisfactory segmentation in 68% of the 475 unseen examinations, while 26% needed minor adjustments, 5% needed major adjustments, and in 0.4%, the cropping model failed. Conclusion The DL pipeline can provide fast standardized segmentation for patients with single ventricle physiology across multiple centers. This pipeline can be applied to all cardiac MRI examinations in the FORCE registry. Keywords: Cardiac, Adults and Pediatrics, MR Imaging, Congenital, Volume Analysis, Segmentation, Quantification Supplemental material is available for this article. © RSNA, 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Mikasaaaaa采纳,获得10
1秒前
活泼的龙猫完成签到,获得积分10
2秒前
3秒前
Xxxxzzz完成签到,获得积分10
4秒前
科研通AI2S应助太渊采纳,获得10
5秒前
8秒前
你好发布了新的文献求助20
9秒前
搜集达人应助CXX采纳,获得10
9秒前
9秒前
13秒前
eee发布了新的文献求助10
13秒前
13秒前
可乐应助不是采纳,获得10
13秒前
14秒前
烟花应助感动世倌采纳,获得10
14秒前
耍酷的白梦完成签到,获得积分10
14秒前
Mikasaaaaa完成签到 ,获得积分10
16秒前
17秒前
牛头人发布了新的文献求助30
19秒前
anhong99999发布了新的文献求助10
19秒前
研友_VZG7GZ应助碗碗采纳,获得10
20秒前
DrYang完成签到,获得积分20
20秒前
许什么诺完成签到 ,获得积分10
21秒前
贝儿完成签到,获得积分10
22秒前
22秒前
Lucas应助某艺采纳,获得10
22秒前
DrYang发布了新的文献求助10
23秒前
刘小小123发布了新的文献求助10
24秒前
牛头人完成签到,获得积分10
25秒前
感动世倌发布了新的文献求助10
25秒前
eee完成签到,获得积分10
26秒前
咿呀呀完成签到,获得积分10
27秒前
你好完成签到,获得积分10
29秒前
感动世倌完成签到,获得积分10
31秒前
活力竺发布了新的文献求助10
33秒前
35秒前
丰知然应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
充电宝应助科研通管家采纳,获得10
39秒前
隐形曼青应助科研通管家采纳,获得10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313609
求助须知:如何正确求助?哪些是违规求助? 2945947
关于积分的说明 8527613
捐赠科研通 2621558
什么是DOI,文献DOI怎么找? 1433832
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637