Deep Incomplete Multi-View Clustering with Cross-View Partial Sample and Prototype Alignment

计算机科学 聚类分析 样品(材料) 人工智能 数据挖掘 灵活性(工程) 水准点(测量) 机器学习 数学 统计 化学 大地测量学 色谱法 地理
作者
Jiaqi Jin,Siwei Wang,Zhibin Dong,Xinwang Liu,En Zhu
标识
DOI:10.1109/cvpr52729.2023.01116
摘要

The success of existing multi-view clustering relies on the assumption of sample integrity across multiple views. However, in real-world scenarios, samples of multi-view are partially available due to data corruption or sensor failure, which leads to incomplete multi-view clustering study (IMVC). Although several attempts have been proposed to address IMVC, they suffer from the following draw-backs: i) Existing methods mainly adopt cross-view contrastive learning forcing the representations of each sample across views to be exactly the same, which might ignore view discrepancy and flexibility in representations; ii) Due to the absence of non-observed samples across multiple views, the obtained prototypes of clusters might be unaligned and biased, leading to incorrect fusion. To address the above issues, we propose a Cross-view Partial Sample and Prototype Alignment Network (CPSPAN) for Deep Incomplete Multi-view Clustering. Firstly, unlike existing contrastive-based methods, we adopt pair-observed data alignment as 'proxy supervised signals' to guide instance-to-instance correspondence construction among views. Then, regarding of the shifted prototypes in IMVC, we further propose a prototype alignment module to achieve incomplete distribution calibration across views. Extensive experimental results showcase the effectiveness of our proposed modules, attaining noteworthy performance improvements when compared to existing IMVC competitors on benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大吴克发布了新的文献求助10
刚刚
饱满的煎饼完成签到,获得积分10
刚刚
dzdzn3关注了科研通微信公众号
刚刚
KING完成签到,获得积分10
1秒前
seventonight2完成签到,获得积分10
1秒前
顾矜应助xwc采纳,获得10
1秒前
Relax发布了新的文献求助10
1秒前
微笑的语梦完成签到 ,获得积分10
2秒前
落寞的紫山完成签到,获得积分10
2秒前
杨大大发布了新的文献求助10
2秒前
BOSSJING完成签到,获得积分10
2秒前
Jasper应助搞怪的人龙采纳,获得10
3秒前
3秒前
benj完成签到,获得积分10
3秒前
3秒前
zoko发布了新的文献求助10
3秒前
周老八发布了新的文献求助10
3秒前
3秒前
小杨爱吃羊完成签到 ,获得积分10
3秒前
lszhw完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
美好乌龟完成签到 ,获得积分10
4秒前
4秒前
烟雨行舟完成签到,获得积分10
5秒前
5秒前
5秒前
搜集达人应助刘星星采纳,获得30
6秒前
赘婿应助顺利水杯采纳,获得10
6秒前
6秒前
明亮的溪灵完成签到,获得积分10
6秒前
7秒前
7秒前
充电宝应助01259采纳,获得10
7秒前
天真的莺完成签到,获得积分10
8秒前
想要赚大钱完成签到,获得积分10
8秒前
大模型应助徐慕源采纳,获得10
8秒前
格格星发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740