Two-dimensional anisotropic monolayers NbOX2 (X = Cl, Br, I): Promising candidates for photocatalytic water splitting with high solar-to-hydrogen efficiency

单层 光催化 带隙 材料科学 分解水 光催化分解水 半导体 吸收(声学) 各向异性 光化学 直接和间接带隙 化学 纳米技术 光电子学 光学 复合材料 有机化学 物理 催化作用
作者
Lu Pan,Yu-Lu Wan,Zhao‐Qi Wang,Hua-Yun Geng,Xiang-Rong Chen
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:134 (8) 被引量:15
标识
DOI:10.1063/5.0164167
摘要

Motivated by the recent experimental synthesis of two-dimensional (2D) NbOI2 which possesses a moderate bandgap and outstanding absorption of sunlight, using the first-principles calculations, we conduct a thorough study of the geometric configuration, electronic structures, and photocatalytic properties for NbOX2 (X = Cl, Br, I) monolayers. These NbOX2 monolayers have been demonstrated to be dynamically, thermally, and mechanically stable. The significant anisotropic mechanical properties of NbOX2 monolayers are reflected by the calculated Young's modulus and Poisson's ratio. Our results indicate that these NbOX2 materials unfold semiconductor characters with indirect bandgaps of 1.886, 1.909, and 1.813 eV, respectively. Among these monolayers, it is found that the NbOBr2 system exhibits a favorable photocatalytic activity in an acidic condition (pH = 0), and the NbOI2 monolayer can act as a potential photocatalyst for spontaneous photocatalytic water splitting under a neutral environment (pH = 7). Furthermore, the response of bandgap and band edge positions of NbOX2 monolayers to the exerting in-plane strain (–6% to 6%) are investigated. These NbOX2 monolayers also show strong light absorption from the visible to ultraviolet region and anisotropic high carrier transport. Particularly, the high solar-to-hydrogen efficiency of the NbOCl2 (1% tensile strain), NbOBr2, and NbOI2 monolayers are predicted to be 14.11% (pH = 0), 16.34% (pH = 0), and 17.05% (pH = 7), respectively. Therefore, we expect the NbOX2 monolayers to be promising candidates for highly efficient photocatalytic water splitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwwww发布了新的文献求助10
刚刚
1秒前
1秒前
凶狠的天佑完成签到,获得积分20
2秒前
2秒前
天天向上发布了新的文献求助20
4秒前
4秒前
4秒前
5秒前
柒丶完成签到,获得积分10
6秒前
呆萌的无血完成签到,获得积分10
6秒前
6昂完成签到 ,获得积分10
6秒前
nenoaowu发布了新的文献求助10
6秒前
桐桐应助风再起时采纳,获得10
6秒前
Luanyb完成签到,获得积分10
6秒前
科研通AI6应助aka好吃鬼采纳,获得10
8秒前
yunjian1583发布了新的文献求助30
9秒前
Owen应助nenoaowu采纳,获得10
10秒前
何雨航发布了新的文献求助10
10秒前
limengzhe发布了新的文献求助10
10秒前
10秒前
龙星完成签到,获得积分10
10秒前
11秒前
好好好完成签到 ,获得积分10
12秒前
13秒前
13秒前
包惜筠完成签到 ,获得积分10
14秒前
14秒前
Jasper应助文艺大炮采纳,获得10
15秒前
15秒前
自觉问儿完成签到,获得积分20
15秒前
15秒前
15秒前
小徐发布了新的文献求助10
15秒前
思源应助cj采纳,获得10
15秒前
18秒前
fang完成签到,获得积分10
19秒前
姚芭蕉完成签到 ,获得积分0
19秒前
小一完成签到 ,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299382
求助须知:如何正确求助?哪些是违规求助? 4447543
关于积分的说明 13843076
捐赠科研通 4333171
什么是DOI,文献DOI怎么找? 2378566
邀请新用户注册赠送积分活动 1373887
关于科研通互助平台的介绍 1339425