Drug–target affinity prediction method based on multi-scale information interaction and graph optimization

可解释性 计算机科学 粒度 数据挖掘 图形 交互信息 水准点(测量) 人工智能 机器学习 代表(政治) 理论计算机科学 数学 大地测量学 操作系统 统计 政治 法学 地理 政治学
作者
Zhiqin Zhu,Yao Zheng,Xin Zheng,Guanqiu Qi,Yuanyuan Li,Neal Mazur,Xinbo Gao,Yifei Gong,Baisen Cong
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107621-107621 被引量:71
标识
DOI:10.1016/j.compbiomed.2023.107621
摘要

Drug–target affinity (DTA) prediction as an emerging and effective method is widely applied to explore the strength of drug–target interactions in drug development research. By predicting these interactions, researchers can assess the potential efficacy and safety of candidate drugs at an early stage, narrowing down the search space for therapeutic targets and accelerating the discovery and development of new drugs. However, existing DTA prediction models mainly use graphical representations of drug molecules, which lack information on interactions between individual substructures, thus affecting prediction accuracy and model interpretability. Therefore, transformer and diffusion on drug graphs in DTA prediction (TDGraphDTA) are introduced to predict drug–target interactions using multi-scale information interaction and graph optimization. An interactive module is integrated into feature extraction of drug and target features at different granularity levels. A diffusion model-based graph optimization module is proposed to improve the representation of molecular graph structures and enhance the interpretability of graph representations while obtaining optimal feature representations. In addition, TDGraphDTA improves the accuracy and reliability of predictions by capturing relationships and contextual information between molecular substructures. The performance of the proposed TDGraphDTA in DTA prediction was verified on three publicly available benchmark datasets (Davis, Metz, and KIBA). Compared with state-of-the-art baseline models, it achieved better results in terms of consistency index, R-squared, etc. Furthermore, compared with some existing methods, the proposed TDGraphDTA is demonstrated to have better structure capturing capabilities by visualizing the feature capturing capabilities of the model using Grad-AAM toxicity labels in the ToxCast dataset. The corresponding source codes are available at https://github.com/Lamouryz/TDGraph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
OKOK发布了新的文献求助10
1秒前
木又权完成签到,获得积分10
3秒前
gkads完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
隋阳完成签到 ,获得积分10
5秒前
6秒前
gxc发布了新的文献求助10
6秒前
秋程发布了新的文献求助10
6秒前
lym完成签到,获得积分10
11秒前
陌上尘发布了新的文献求助10
11秒前
11秒前
研友_LN32Mn发布了新的文献求助10
12秒前
Le完成签到,获得积分10
15秒前
科研通AI6.2应助秋程采纳,获得10
17秒前
18秒前
孤独巡礼完成签到,获得积分10
19秒前
XiaoYuuu完成签到,获得积分10
20秒前
tigeryao发布了新的文献求助10
23秒前
26秒前
26秒前
静心养性发布了新的文献求助10
29秒前
ray完成签到,获得积分10
31秒前
qianyuan发布了新的文献求助10
31秒前
35秒前
专注的兰完成签到 ,获得积分10
37秒前
希望天下0贩的0应助colin采纳,获得10
38秒前
666发布了新的文献求助10
40秒前
时一列车完成签到,获得积分20
42秒前
43秒前
静心养性完成签到,获得积分20
44秒前
李健的小迷弟应助qianyuan采纳,获得10
45秒前
小胖发布了新的文献求助10
46秒前
顾矜应助XC采纳,获得10
47秒前
47秒前
雪Q完成签到,获得积分20
48秒前
yyy完成签到 ,获得积分10
50秒前
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872888
求助须知:如何正确求助?哪些是违规求助? 6492970
关于积分的说明 15670072
捐赠科研通 4990278
什么是DOI,文献DOI怎么找? 2690192
邀请新用户注册赠送积分活动 1632707
关于科研通互助平台的介绍 1590589