Mechanism of columnar to equiaxed to lamellar grain transition during wire-laser directed energy deposition 205 C aluminum alloy utilizing a coaxial head: Numerical simulation and experiment

等轴晶 材料科学 微观结构 层状结构 粒度 冶金 沉积(地质) 复合材料 晶粒生长 温度梯度 沉积物 量子力学 生物 物理 古生物学
作者
Zhuanni Gao,Xiaohong Zhan,Huizi Shi,Yifan Li,Xiang Li,Zhiqiang Liu,Leilei Wang
出处
期刊:Journal of Materials Processing Technology [Elsevier]
卷期号:322: 118208-118208 被引量:5
标识
DOI:10.1016/j.jmatprotec.2023.118208
摘要

The microstructure under various conditions shows noticeable differences in the wire-laser directed energy deposition (DED) method using a coaxial head due to the intrinsic properties of aluminum alloy wire materials and the intricate heating process involved. The impacts of varied heat inputs and substrate preheating temperatures on solidification and microstructure evolution were explored in this study. A coupled model, including macroscopic finite element and microscopic cellular automata with interpolation, was employed to investigate the temperature field, thermal cycles, solidification parameters, and microstructure evolution under varied process parameters. This study revealed the transformation of four grain forms in the deposition layer, namely, lamellar grain, equiaxed grain, equiaxed fine grain, and columnar grain, through a comprehensive dynamic simulation of the microstructure. Quantitative research was conducted to determine the solidification region of equiaxed grains and the average length of columnar grain amid solidification under varied crystallization parameters. The findings demonstrated that under a lower heat input and preheating temperature, equiaxed fine grains are generated at the lower region of the deposition layer, while lamellar grains are formed above the equiaxed grains at the upper region of the deposition layer, which is similar to the morphology of a cast microstructure. The typical primary dendritic distance of columnar grain diminishes with the enlargement of the cooling rate and temperature gradient. The findings of this study offer a theoretical framework for regulating the microstructure of aluminum alloy deposition layers manufactured via wire-laser DED technology using a coaxial head.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尘雾发布了新的文献求助10
刚刚
1秒前
一一发布了新的文献求助20
1秒前
1秒前
Aixia完成签到 ,获得积分10
2秒前
葡萄糖完成签到,获得积分10
2秒前
哈哈完成签到,获得积分10
2秒前
在水一方应助CC采纳,获得10
2秒前
2秒前
余笙完成签到 ,获得积分10
3秒前
神勇的雅香应助科研混子采纳,获得10
3秒前
TT发布了新的文献求助10
4秒前
李顺完成签到,获得积分20
5秒前
ayin发布了新的文献求助10
5秒前
wait发布了新的文献求助10
5秒前
我是站长才怪应助xg采纳,获得10
6秒前
童话艺术佳完成签到,获得积分10
6秒前
稀罕你完成签到,获得积分10
6秒前
junzilan发布了新的文献求助10
6秒前
anny.white完成签到,获得积分10
7秒前
科研通AI5应助平常的毛豆采纳,获得10
9秒前
SciGPT应助paul采纳,获得10
12秒前
14秒前
英姑应助书生采纳,获得10
15秒前
科研钓鱼佬完成签到,获得积分10
16秒前
18秒前
petrichor应助C_Cppp采纳,获得10
18秒前
nan完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
勤恳的雨文完成签到,获得积分10
19秒前
木森ab发布了新的文献求助10
20秒前
paul完成签到,获得积分10
20秒前
小鞋完成签到,获得积分10
21秒前
开心青旋发布了新的文献求助10
21秒前
fztnh发布了新的文献求助10
21秒前
无名花生完成签到 ,获得积分10
21秒前
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824