Volatile and semi-volatile organic compounds in landfill leachate: Concurrence, removal and the influencing factors

渗滤液 环境化学 化学 乙苯 甲苯 废物管理 有机化学 工程类
作者
Xiaosong He,Qi Pan,Beidou Xi,Jing Zheng,Qingyu Liu,Yue Sun
出处
期刊:Water Research [Elsevier BV]
卷期号:245: 120566-120566 被引量:21
标识
DOI:10.1016/j.watres.2023.120566
摘要

Volatile and semi-volatile organic compounds (VOCs and SVOCs) carried by landfilled wastes may enter leachate, and require appropriate treatment before discharge. However, the driving factors of the entry of VOCs and SOVCs into leachate, their removal characteristics during leachate treatment and the dominant factors remain unclear. A global survey of the VOCs and SOVCs in leachate from 103 landfill sites combined with 27 articles on leachate treatment was conducted to clarify the abovementioned question. The results showed that SVOCs such as polycyclic aromatic hydrocarbons (PAHs), phthalate acid esters (PAEs) and phenols were the most frequently detected in leachate on a global scale. However, four kinds of VOCs, i.e., toluene, ethylbenzene, xylenes and benzene, were frequently detected at high concentrations in landfill leachate as well. The concentrations of VOCs and SVOCs in leachate ranged from 1 × 10° to 1 × 108 ng/L. Solubility was a key factor driving the entry of VOCs and SOVCs into leachate, and higher solubility enables higher detectable concentrations in leachate (P<0.05). It was easiest to remove monocyclic aromatic hydrocarbons (MAHs) from leachate, followed by phenols and PAHs, and it was most difficult to remove PAEs. In terms of removing MAHs, the anoxic/oxic (A/O) process and the sequential batch reactor (SBR) process were comparable to the advanced oxidization process and far superior to the ultrafiltration and nanofiltration processes, and the removal rate increased with an increase in the Henry's constant and/or the hydrophilicity of the contaminants during the A/O and SBR processes (P<0.05). There were no significant differences among biological, advanced oxidation and reverse osmosis processes in the removal of phenolic. In terms of removing PAHs, the A/O process was comparable to the advanced oxidization process and more efficient than the other treatment processes. As to removing PAEs, the membrane bioreactor process was almost the same efficient as the advanced oxidization process and far more efficient than the other biological treatment processes. Future research should focus on the pollution of atmospheric VOCs and SVOCs near aeration units in leachate treatment plants, as well as the health risk assessment of VOCs and SVOCs in the treated leachate effluent. To the best of our knowledge, this is the first review regarding the occurrence and removal of VOCs and SVOCs from landfill leachates worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分10
1秒前
1秒前
无心发布了新的文献求助10
1秒前
丘比特应助肖恩采纳,获得10
1秒前
英俊的铭应助漂亮的念双采纳,获得10
1秒前
所所应助123采纳,获得10
1秒前
2秒前
2秒前
2秒前
JUYIN完成签到,获得积分10
2秒前
浮游应助重要棉花糖采纳,获得10
3秒前
浮游应助重要棉花糖采纳,获得10
3秒前
小虾米应助野原顶不住采纳,获得10
4秒前
七岁完成签到,获得积分10
5秒前
5秒前
kkk发布了新的文献求助10
6秒前
zhou完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
科研通AI6应助shi hui采纳,获得10
7秒前
坦率天亦完成签到,获得积分10
8秒前
王思甜发布了新的文献求助10
8秒前
sanmu发布了新的文献求助10
8秒前
8秒前
hhhh完成签到,获得积分10
8秒前
於菟完成签到 ,获得积分10
8秒前
8秒前
9秒前
hbq完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
浮游应助加缪采纳,获得10
10秒前
传奇3应助逍遥自在采纳,获得10
10秒前
10秒前
11秒前
ziyue应助哈哈采纳,获得10
11秒前
2134发布了新的文献求助10
11秒前
豆子应助沙发发采纳,获得20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193549
求助须知:如何正确求助?哪些是违规求助? 4376036
关于积分的说明 13627965
捐赠科研通 4230855
什么是DOI,文献DOI怎么找? 2320601
邀请新用户注册赠送积分活动 1318989
关于科研通互助平台的介绍 1269260