Multi-stage Unet segmentation and automatic measurement of pharyngeal airway based on lateral cephalograms

医学 组内相关 气道 分割 口腔正畸科 阶段(地层学) 牙科 再现性 计算机科学 数学 统计 人工智能 外科 生物 古生物学
作者
Xiangquan Meng,Feng Mao,Zhi Mao,Qing Xue,Jiwei Jia,Min Hu
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:136: 104637-104637 被引量:2
标识
DOI:10.1016/j.jdent.2023.104637
摘要

Orthodontic treatment profoundly impact the pharyngeal airway (PA) of patients. Airway examination is an integral part of daily orthodontic diagnosis, and lateral cephalograms (LC) are reliable to reveal PA structures. This study attempted to develop a simple method to help clinicians make a preliminary judgement of patients' PA conditions and assess the impact of orthodontic treatment on their airways. LCs of 764 patients were used to train a multistage unit segmentation model. Another 130 images were used to validate the model and more 130 images were used to test the model. Unet was used as the backbone, with a mean dice value of 0.8180, precision of 0.8393, and recall of 0.8188. Furthermore, we identified seven key points and measured related indices. The length of the line separating the nasopharynx and oropharynx and the line separating the oropharynx and hypopharynx were manually measured thrice and the average values was compared. The intraclass correlation coefficient (ICC) for the two lines was 0.599 and 0.855. Then, we performed a single linear regression analysis, which indicated a strong correlation between the predictions and measurements for the two lines. This method is reliable for segmenting three regions (nasopharynx, oropharynx, and hypopharynx) of the PA and calculating related indices. However, the predictions obtained from this model still have errors, and it is necessary for clinical practitioners to assess and adjust the predictions. Our model can help orthodontists formulate personalised treatment plans and evaluate the risk of airway stenosis during orthodontic treatment. This method may mark the beginning of a new and simpler approach for PA obstruction detection, specifically tailored to orthodontic patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助Yiiimmmwang采纳,获得10
刚刚
遊星完成签到,获得积分10
刚刚
可靠嘉懿完成签到 ,获得积分10
1秒前
旅顺口老李完成签到 ,获得积分10
1秒前
leon发布了新的文献求助30
1秒前
lalala发布了新的文献求助10
1秒前
dingdong发布了新的文献求助10
1秒前
辛勤的仰发布了新的文献求助10
1秒前
科研通AI2S应助白华苍松采纳,获得10
1秒前
Kiyotaka发布了新的文献求助30
1秒前
xiaozhenA发布了新的文献求助10
1秒前
Steve完成签到,获得积分10
2秒前
p8793428发布了新的文献求助30
2秒前
科研通AI2S应助zrk采纳,获得10
2秒前
2秒前
3秒前
3秒前
科研通AI2S应助lkc采纳,获得10
3秒前
雾见春完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
lmy完成签到 ,获得积分10
4秒前
平常的可乐完成签到 ,获得积分10
5秒前
5秒前
邵初蓝完成签到,获得积分10
6秒前
卡卡发布了新的文献求助10
7秒前
岳粤完成签到,获得积分10
7秒前
8秒前
大神发布了新的文献求助10
8秒前
8秒前
8秒前
xjtu发布了新的文献求助10
9秒前
雾见春发布了新的文献求助30
9秒前
姚文超完成签到,获得积分20
10秒前
科研小菜发布了新的文献求助10
10秒前
岳粤发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794