Multi-stage Unet segmentation and automatic measurement of pharyngeal airway based on lateral cephalograms

医学 组内相关 气道 分割 口腔正畸科 阶段(地层学) 牙科 再现性 计算机科学 数学 统计 人工智能 外科 古生物学 生物
作者
Xiangquan Meng,Feng Mao,Zhi Mao,Qing Xue,Jiwei Jia,Min Hu
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:136: 104637-104637 被引量:2
标识
DOI:10.1016/j.jdent.2023.104637
摘要

Orthodontic treatment profoundly impact the pharyngeal airway (PA) of patients. Airway examination is an integral part of daily orthodontic diagnosis, and lateral cephalograms (LC) are reliable to reveal PA structures. This study attempted to develop a simple method to help clinicians make a preliminary judgement of patients' PA conditions and assess the impact of orthodontic treatment on their airways. LCs of 764 patients were used to train a multistage unit segmentation model. Another 130 images were used to validate the model and more 130 images were used to test the model. Unet was used as the backbone, with a mean dice value of 0.8180, precision of 0.8393, and recall of 0.8188. Furthermore, we identified seven key points and measured related indices. The length of the line separating the nasopharynx and oropharynx and the line separating the oropharynx and hypopharynx were manually measured thrice and the average values was compared. The intraclass correlation coefficient (ICC) for the two lines was 0.599 and 0.855. Then, we performed a single linear regression analysis, which indicated a strong correlation between the predictions and measurements for the two lines. This method is reliable for segmenting three regions (nasopharynx, oropharynx, and hypopharynx) of the PA and calculating related indices. However, the predictions obtained from this model still have errors, and it is necessary for clinical practitioners to assess and adjust the predictions. Our model can help orthodontists formulate personalised treatment plans and evaluate the risk of airway stenosis during orthodontic treatment. This method may mark the beginning of a new and simpler approach for PA obstruction detection, specifically tailored to orthodontic patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助苏晓聪采纳,获得10
1秒前
1秒前
JamesPei应助axiba采纳,获得10
2秒前
卜懂得完成签到,获得积分10
2秒前
小苹果发布了新的文献求助10
2秒前
jjj发布了新的文献求助10
2秒前
美好焦发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
ZHT完成签到,获得积分10
3秒前
3秒前
3秒前
Grace Lee完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
热心的从梦完成签到,获得积分10
4秒前
羊驼罐头完成签到,获得积分10
4秒前
乐观的以蓝完成签到,获得积分20
5秒前
田様应助读心理学导致的采纳,获得20
5秒前
在水一方应助Sissi采纳,获得10
5秒前
vspill发布了新的文献求助10
5秒前
简单谷梦发布了新的文献求助10
5秒前
6秒前
叉叉发布了新的文献求助10
6秒前
6秒前
Frankie发布了新的文献求助10
6秒前
mkl发布了新的文献求助10
6秒前
a1207732382发布了新的文献求助30
6秒前
十二月发布了新的文献求助10
6秒前
风中的暴雪完成签到,获得积分10
6秒前
6秒前
fighting完成签到,获得积分10
6秒前
7秒前
滴滴完成签到,获得积分10
7秒前
8秒前
pop发布了新的文献求助10
8秒前
yue发布了新的文献求助10
8秒前
领导范儿应助Gambit采纳,获得10
9秒前
一木张完成签到,获得积分10
9秒前
sky完成签到,获得积分10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951641
求助须知:如何正确求助?哪些是违规求助? 3497078
关于积分的说明 11085803
捐赠科研通 3227504
什么是DOI,文献DOI怎么找? 1784450
邀请新用户注册赠送积分活动 868519
科研通“疑难数据库(出版商)”最低求助积分说明 801154