亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EWSO: Boosting White Shark Optimizer for solving engineering design and combinatorial problems

元启发式 数学优化 计算机科学 算法 最优化问题 局部最优 组合优化 人口 工程优化 二次分配问题 数学 人口学 社会学
作者
Essam H. Houssein,Maani A. Saeed,Mustafa M. Al-Sayed
出处
期刊:Mathematics and Computers in Simulation [Elsevier]
被引量:2
标识
DOI:10.1016/j.matcom.2023.11.019
摘要

Population-based meta-heuristic algorithms are crucial for solving optimization issues. One of these recent algorithms that is now believed to be promising metaheuristic algorithm is the White Shark Optimizer (WSO). Although it has produced a number of encouraging results, it has some certain downsides like other metaheuristic algorithms (MAs). Dropping into the local minimum optima and local solution zones, the uneven distribution of exploration and exploitation abilities, and the slow rate of convergence are some of these downsides. To fight those, two efficient mechanisms, i.e., Enhanced Solution Quality (ESQ) and Orthogonal Learning (OL), have been applied to develop an enhanced version of WSO called EWSO. The effectiveness of EWSO has been comprehensively evaluated using the IEEE CEC'2022 test suite. For further verification and achieving the principle of generality, the proposed algorithm has been used to provide good solutions for three engineering design issues (i.e., Gear train, Vertical deflection of an I beam, and the piston lever), for further applicability it has also been employed to solve two combinatorial optimization problems (i.e., bin packing problem (BPP) and quadratic assignment problems (QAP)). This effectiveness has been evaluated compared to the most recent and common metaheuristics, i.e., Kepler Optimization Algorithm (KOA), Seagull Optimization Algorithm (SOA), Spider Wasp Optimizer (SWO), and some well-known metaheuristic algorithms such as; Sine cosine Algorithm (SCA), Whale Optimization Algorithm (WOA), and Trees Social Relations Optimization (TSR), in addition to the original SWO. The experimental results and statistical measures confirm the effectiveness and reliability of the proposed algorithm (EWSO) in tackling real-world issues. It is able to overcome the previous drawbacks by providing the global optimum and preventing premature convergence through an increase in population diversity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白发布了新的文献求助10
2秒前
牛牛月饼发布了新的文献求助30
11秒前
54秒前
东溟渔夫发布了新的文献求助10
1分钟前
牛牛月饼完成签到,获得积分10
1分钟前
Akim应助东溟渔夫采纳,获得10
1分钟前
BBQ关闭了BBQ文献求助
1分钟前
1分钟前
2分钟前
v哈哈发布了新的文献求助10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
Ming发布了新的文献求助10
2分钟前
SciGPT应助Ming采纳,获得10
2分钟前
瘦瘦的师发布了新的文献求助10
3分钟前
大模型应助zhengzhster采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
自律发布了新的文献求助10
3分钟前
自律完成签到,获得积分10
3分钟前
BBQ发布了新的文献求助10
4分钟前
Ezekiel给Ezekiel的求助进行了留言
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
BBQ完成签到,获得积分10
4分钟前
lim完成签到,获得积分10
4分钟前
4分钟前
zhengzhster发布了新的文献求助10
4分钟前
小邓完成签到,获得积分10
5分钟前
可乐发布了新的文献求助30
5分钟前
量子星尘发布了新的文献求助10
5分钟前
小于完成签到,获得积分10
5分钟前
5分钟前
Ezekiel发布了新的文献求助10
5分钟前
上官枫完成签到 ,获得积分10
5分钟前
5分钟前
Ming发布了新的文献求助10
5分钟前
小于完成签到,获得积分10
5分钟前
Ming完成签到,获得积分10
6分钟前
merrylake完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
vivishe发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4862399
关于积分的说明 15107785
捐赠科研通 4823068
什么是DOI,文献DOI怎么找? 2581898
邀请新用户注册赠送积分活动 1536037
关于科研通互助平台的介绍 1494433