EWSO: Boosting White Shark Optimizer for solving engineering design and combinatorial problems

元启发式 数学优化 计算机科学 算法 最优化问题 局部最优 组合优化 人口 工程优化 二次分配问题 数学 社会学 人口学
作者
Essam H. Houssein,Maani A. Saeed,Mustafa M. Al-Sayed
出处
期刊:Mathematics and Computers in Simulation [Elsevier]
被引量:2
标识
DOI:10.1016/j.matcom.2023.11.019
摘要

Population-based meta-heuristic algorithms are crucial for solving optimization issues. One of these recent algorithms that is now believed to be promising metaheuristic algorithm is the White Shark Optimizer (WSO). Although it has produced a number of encouraging results, it has some certain downsides like other metaheuristic algorithms (MAs). Dropping into the local minimum optima and local solution zones, the uneven distribution of exploration and exploitation abilities, and the slow rate of convergence are some of these downsides. To fight those, two efficient mechanisms, i.e., Enhanced Solution Quality (ESQ) and Orthogonal Learning (OL), have been applied to develop an enhanced version of WSO called EWSO. The effectiveness of EWSO has been comprehensively evaluated using the IEEE CEC'2022 test suite. For further verification and achieving the principle of generality, the proposed algorithm has been used to provide good solutions for three engineering design issues (i.e., Gear train, Vertical deflection of an I beam, and the piston lever), for further applicability it has also been employed to solve two combinatorial optimization problems (i.e., bin packing problem (BPP) and quadratic assignment problems (QAP)). This effectiveness has been evaluated compared to the most recent and common metaheuristics, i.e., Kepler Optimization Algorithm (KOA), Seagull Optimization Algorithm (SOA), Spider Wasp Optimizer (SWO), and some well-known metaheuristic algorithms such as; Sine cosine Algorithm (SCA), Whale Optimization Algorithm (WOA), and Trees Social Relations Optimization (TSR), in addition to the original SWO. The experimental results and statistical measures confirm the effectiveness and reliability of the proposed algorithm (EWSO) in tackling real-world issues. It is able to overcome the previous drawbacks by providing the global optimum and preventing premature convergence through an increase in population diversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
星星发布了新的文献求助80
2秒前
2秒前
yanna完成签到,获得积分10
5秒前
6秒前
Janus完成签到,获得积分10
6秒前
徐芳菲完成签到 ,获得积分10
7秒前
8秒前
wangYJ驳回了慕青应助
8秒前
等乙天发布了新的文献求助10
8秒前
9秒前
wlp鹏完成签到,获得积分10
10秒前
Rain发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
13秒前
大个应助Rain采纳,获得10
14秒前
16秒前
肖先生发布了新的文献求助10
16秒前
Lyj123完成签到,获得积分10
17秒前
dffwlj发布了新的文献求助10
17秒前
19秒前
领导范儿应助秃头叶青青采纳,获得10
19秒前
诸岩发布了新的文献求助10
20秒前
浩然发布了新的文献求助10
21秒前
21秒前
栗子应助owoow采纳,获得10
23秒前
科研通AI2S应助owoow采纳,获得10
23秒前
23秒前
24秒前
栗子应助与落采纳,获得10
24秒前
ira发布了新的文献求助10
26秒前
平常的伊关注了科研通微信公众号
26秒前
26秒前
所所应助123123采纳,获得10
27秒前
SciGPT应助林夕采纳,获得10
27秒前
28秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787759
关于积分的说明 7783069
捐赠科研通 2443822
什么是DOI,文献DOI怎么找? 1299439
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954