EWSO: Boosting White Shark Optimizer for solving engineering design and combinatorial problems

元启发式 数学优化 计算机科学 算法 最优化问题 局部最优 组合优化 人口 工程优化 二次分配问题 数学 人口学 社会学
作者
Essam H. Houssein,Maani A. Saeed,Mustafa M. Al-Sayed
出处
期刊:Mathematics and Computers in Simulation [Elsevier BV]
被引量:2
标识
DOI:10.1016/j.matcom.2023.11.019
摘要

Population-based meta-heuristic algorithms are crucial for solving optimization issues. One of these recent algorithms that is now believed to be promising metaheuristic algorithm is the White Shark Optimizer (WSO). Although it has produced a number of encouraging results, it has some certain downsides like other metaheuristic algorithms (MAs). Dropping into the local minimum optima and local solution zones, the uneven distribution of exploration and exploitation abilities, and the slow rate of convergence are some of these downsides. To fight those, two efficient mechanisms, i.e., Enhanced Solution Quality (ESQ) and Orthogonal Learning (OL), have been applied to develop an enhanced version of WSO called EWSO. The effectiveness of EWSO has been comprehensively evaluated using the IEEE CEC'2022 test suite. For further verification and achieving the principle of generality, the proposed algorithm has been used to provide good solutions for three engineering design issues (i.e., Gear train, Vertical deflection of an I beam, and the piston lever), for further applicability it has also been employed to solve two combinatorial optimization problems (i.e., bin packing problem (BPP) and quadratic assignment problems (QAP)). This effectiveness has been evaluated compared to the most recent and common metaheuristics, i.e., Kepler Optimization Algorithm (KOA), Seagull Optimization Algorithm (SOA), Spider Wasp Optimizer (SWO), and some well-known metaheuristic algorithms such as; Sine cosine Algorithm (SCA), Whale Optimization Algorithm (WOA), and Trees Social Relations Optimization (TSR), in addition to the original SWO. The experimental results and statistical measures confirm the effectiveness and reliability of the proposed algorithm (EWSO) in tackling real-world issues. It is able to overcome the previous drawbacks by providing the global optimum and preventing premature convergence through an increase in population diversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着的安雁完成签到,获得积分10
刚刚
不懈奋进应助nz采纳,获得30
1秒前
1秒前
大气乘风发布了新的文献求助10
2秒前
昵称发布了新的文献求助10
2秒前
林大侠发布了新的文献求助10
3秒前
Atom完成签到 ,获得积分10
3秒前
燃尔完成签到 ,获得积分10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
Hello应助啦啦啦采纳,获得10
5秒前
5秒前
6秒前
7秒前
搜集达人应助全若之采纳,获得10
7秒前
7秒前
xiangeyedu发布了新的文献求助10
8秒前
8秒前
SaqLa完成签到,获得积分10
8秒前
HXY发布了新的文献求助30
9秒前
华仔应助晨晨采纳,获得30
10秒前
科目三应助小卫采纳,获得10
10秒前
内向雨南完成签到,获得积分10
11秒前
zgliu78完成签到,获得积分10
11秒前
思源应助zhaosh采纳,获得10
12秒前
12秒前
小马甲应助第八维采纳,获得30
13秒前
贺呵呵发布了新的文献求助10
13秒前
13秒前
酷波er应助HSD采纳,获得10
13秒前
13秒前
Dasiliy完成签到,获得积分10
13秒前
桐桐应助叁金采纳,获得30
14秒前
14秒前
领导范儿应助啦啦啦采纳,获得10
14秒前
汉堡包应助明理乐珍采纳,获得20
15秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979122
求助须知:如何正确求助?哪些是违规求助? 3522967
关于积分的说明 11215682
捐赠科研通 3260436
什么是DOI,文献DOI怎么找? 1799990
邀请新用户注册赠送积分活动 878770
科研通“疑难数据库(出版商)”最低求助积分说明 807061