元启发式
数学优化
计算机科学
算法
最优化问题
局部最优
组合优化
人口
工程优化
二次分配问题
数学
社会学
人口学
作者
Essam H. Houssein,Maani A. Saeed,Mustafa M. Al-Sayed
标识
DOI:10.1016/j.matcom.2023.11.019
摘要
Population-based meta-heuristic algorithms are crucial for solving optimization issues. One of these recent algorithms that is now believed to be promising metaheuristic algorithm is the White Shark Optimizer (WSO). Although it has produced a number of encouraging results, it has some certain downsides like other metaheuristic algorithms (MAs). Dropping into the local minimum optima and local solution zones, the uneven distribution of exploration and exploitation abilities, and the slow rate of convergence are some of these downsides. To fight those, two efficient mechanisms, i.e., Enhanced Solution Quality (ESQ) and Orthogonal Learning (OL), have been applied to develop an enhanced version of WSO called EWSO. The effectiveness of EWSO has been comprehensively evaluated using the IEEE CEC'2022 test suite. For further verification and achieving the principle of generality, the proposed algorithm has been used to provide good solutions for three engineering design issues (i.e., Gear train, Vertical deflection of an I beam, and the piston lever), for further applicability it has also been employed to solve two combinatorial optimization problems (i.e., bin packing problem (BPP) and quadratic assignment problems (QAP)). This effectiveness has been evaluated compared to the most recent and common metaheuristics, i.e., Kepler Optimization Algorithm (KOA), Seagull Optimization Algorithm (SOA), Spider Wasp Optimizer (SWO), and some well-known metaheuristic algorithms such as; Sine cosine Algorithm (SCA), Whale Optimization Algorithm (WOA), and Trees Social Relations Optimization (TSR), in addition to the original SWO. The experimental results and statistical measures confirm the effectiveness and reliability of the proposed algorithm (EWSO) in tackling real-world issues. It is able to overcome the previous drawbacks by providing the global optimum and preventing premature convergence through an increase in population diversity.
科研通智能强力驱动
Strongly Powered by AbleSci AI