Artificial intelligence and allied subsets in early detection and preclusion of gynecological cancers

妇科癌症 医学 卵巢癌 鉴定(生物学) 癌症 乳腺癌 宫颈癌 妇科 人工智能 计算机科学 内科学 生物 植物
作者
Pankaj Garg,Atish Mohanty,Sravani Ramisetty,Prakash Kulkarni,David Horne,Evan Pisick,Ravi Salgia,Sharad S. Singhal
出处
期刊:Biochimica Et Biophysica Acta - Reviews On Cancer [Elsevier]
卷期号:1878 (6): 189026-189026 被引量:29
标识
DOI:10.1016/j.bbcan.2023.189026
摘要

Gynecological cancers including breast, cervical, ovarian, uterine, and vaginal, pose the greatest threat to world health, with early identification being crucial to patient outcomes and survival rates. The application of machine learning (ML) and artificial intelligence (AI) approaches to the study of gynecological cancer has shown potential to revolutionize cancer detection and diagnosis. The current review outlines the significant advancements, obstacles, and prospects brought about by AI and ML technologies in the timely identification and accurate diagnosis of different types of gynecological cancers. The AI-powered technologies can use genomic data to discover genetic alterations and biomarkers linked to a particular form of gynecologic cancer, assisting in the creation of targeted treatments. Furthermore, it has been shown that the potential benefits of AI and ML technologies in gynecologic tumors can greatly increase the accuracy and efficacy of cancer diagnosis, reduce diagnostic delays, and possibly eliminate the need for needless invasive operations. In conclusion, the review focused on the integrative part of AI and ML based tools and techniques in the early detection and exclusion of various cancer types; together with a collaborative coordination between research clinicians, data scientists, and regulatory authorities, which is suggested to realize the full potential of AI and ML in gynecologic cancer care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助饱满的小霜采纳,获得10
1秒前
不安含羞草完成签到,获得积分10
1秒前
天下无敌丑娃娃完成签到,获得积分10
1秒前
睡不醒的网完成签到,获得积分10
1秒前
1秒前
yyy发布了新的文献求助10
1秒前
完美世界应助iiiiiuy采纳,获得30
1秒前
1秒前
汉堡包应助hhh采纳,获得10
2秒前
粥粥应助蓝雨冰竹采纳,获得10
2秒前
2秒前
曹世纪发布了新的文献求助10
3秒前
Di完成签到,获得积分10
3秒前
3秒前
jopaul完成签到,获得积分10
3秒前
LX1005完成签到,获得积分10
4秒前
yu完成签到,获得积分10
4秒前
Orange应助yao chen采纳,获得10
4秒前
科研通AI6应助嘉嘉琦采纳,获得10
4秒前
勤恳的若风完成签到,获得积分10
5秒前
李家酥铺完成签到,获得积分20
5秒前
远远发布了新的文献求助10
5秒前
kefan_123完成签到,获得积分10
5秒前
5秒前
王思鲁完成签到,获得积分10
6秒前
Lin完成签到,获得积分10
6秒前
胖胖桑完成签到,获得积分20
6秒前
汉堡包应助lvwubin采纳,获得10
7秒前
是亲爱的小王完成签到,获得积分10
7秒前
8秒前
8秒前
虚影完成签到,获得积分10
8秒前
赵若琪发布了新的文献求助30
8秒前
十叶月完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
轻松一曲应助kndr10采纳,获得10
10秒前
1234发布了新的文献求助10
10秒前
情怀应助lanzinuo采纳,获得10
10秒前
llllll完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271