Artificial intelligence and allied subsets in early detection and preclusion of gynecological cancers

妇科癌症 医学 卵巢癌 鉴定(生物学) 癌症 乳腺癌 宫颈癌 妇科 人工智能 计算机科学 内科学 生物 植物
作者
Pankaj Garg,Atish Mohanty,Sravani Ramisetty,Prakash Kulkarni,David Horne,Evan Pisick,Ravi Salgia,Sharad S. Singhal
出处
期刊:Biochimica Et Biophysica Acta - Reviews On Cancer [Elsevier]
卷期号:1878 (6): 189026-189026 被引量:29
标识
DOI:10.1016/j.bbcan.2023.189026
摘要

Gynecological cancers including breast, cervical, ovarian, uterine, and vaginal, pose the greatest threat to world health, with early identification being crucial to patient outcomes and survival rates. The application of machine learning (ML) and artificial intelligence (AI) approaches to the study of gynecological cancer has shown potential to revolutionize cancer detection and diagnosis. The current review outlines the significant advancements, obstacles, and prospects brought about by AI and ML technologies in the timely identification and accurate diagnosis of different types of gynecological cancers. The AI-powered technologies can use genomic data to discover genetic alterations and biomarkers linked to a particular form of gynecologic cancer, assisting in the creation of targeted treatments. Furthermore, it has been shown that the potential benefits of AI and ML technologies in gynecologic tumors can greatly increase the accuracy and efficacy of cancer diagnosis, reduce diagnostic delays, and possibly eliminate the need for needless invasive operations. In conclusion, the review focused on the integrative part of AI and ML based tools and techniques in the early detection and exclusion of various cancer types; together with a collaborative coordination between research clinicians, data scientists, and regulatory authorities, which is suggested to realize the full potential of AI and ML in gynecologic cancer care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿坤完成签到 ,获得积分10
1秒前
蓝天应助容若采纳,获得10
1秒前
充电宝应助leez采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助30
3秒前
4秒前
小蘑菇应助刘言采纳,获得10
6秒前
6秒前
搞怪山晴发布了新的文献求助10
6秒前
8秒前
JamesPei应助直率的问筠采纳,获得10
9秒前
朻安完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
星辰大海应助黑YA采纳,获得10
11秒前
12秒前
chenhouhan发布了新的文献求助20
12秒前
13秒前
13秒前
leez发布了新的文献求助10
14秒前
哎呦你干嘛完成签到,获得积分20
14秒前
Su发布了新的文献求助10
15秒前
pluto应助独特的绮山采纳,获得10
15秒前
wanci应助星星采纳,获得10
16秒前
16秒前
cetomacrogol完成签到,获得积分10
16秒前
17秒前
感动的小懒虫完成签到,获得积分20
17秒前
17秒前
哈哈哈完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
ybybyb1213发布了新的文献求助30
18秒前
yomi完成签到 ,获得积分10
20秒前
20秒前
20秒前
21秒前
热心雪一完成签到 ,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729696
求助须知:如何正确求助?哪些是违规求助? 5320101
关于积分的说明 15317350
捐赠科研通 4876657
什么是DOI,文献DOI怎么找? 2619509
邀请新用户注册赠送积分活动 1569008
关于科研通互助平台的介绍 1525595