Artificial intelligence and allied subsets in early detection and preclusion of gynecological cancers

妇科癌症 医学 卵巢癌 鉴定(生物学) 癌症 乳腺癌 宫颈癌 妇科 人工智能 计算机科学 内科学 生物 植物
作者
Pankaj Garg,Atish Mohanty,Sravani Ramisetty,Prakash Kulkarni,David Horne,Evan Pisick,Ravi Salgia,Sharad S. Singhal
出处
期刊:Biochimica Et Biophysica Acta - Reviews On Cancer [Elsevier]
卷期号:1878 (6): 189026-189026 被引量:29
标识
DOI:10.1016/j.bbcan.2023.189026
摘要

Gynecological cancers including breast, cervical, ovarian, uterine, and vaginal, pose the greatest threat to world health, with early identification being crucial to patient outcomes and survival rates. The application of machine learning (ML) and artificial intelligence (AI) approaches to the study of gynecological cancer has shown potential to revolutionize cancer detection and diagnosis. The current review outlines the significant advancements, obstacles, and prospects brought about by AI and ML technologies in the timely identification and accurate diagnosis of different types of gynecological cancers. The AI-powered technologies can use genomic data to discover genetic alterations and biomarkers linked to a particular form of gynecologic cancer, assisting in the creation of targeted treatments. Furthermore, it has been shown that the potential benefits of AI and ML technologies in gynecologic tumors can greatly increase the accuracy and efficacy of cancer diagnosis, reduce diagnostic delays, and possibly eliminate the need for needless invasive operations. In conclusion, the review focused on the integrative part of AI and ML based tools and techniques in the early detection and exclusion of various cancer types; together with a collaborative coordination between research clinicians, data scientists, and regulatory authorities, which is suggested to realize the full potential of AI and ML in gynecologic cancer care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BPATIENT应助小天才123采纳,获得10
刚刚
刚刚
幽凡完成签到 ,获得积分10
刚刚
刚刚
刚刚
立夏完成签到,获得积分10
1秒前
1秒前
田乐天发布了新的文献求助10
1秒前
小鱼完成签到,获得积分10
1秒前
鸡蛋酱完成签到 ,获得积分10
2秒前
2秒前
2秒前
xingper完成签到,获得积分10
2秒前
清爽念柏完成签到 ,获得积分10
2秒前
moxin完成签到,获得积分10
3秒前
lin完成签到,获得积分10
3秒前
100完成签到,获得积分10
3秒前
3秒前
天机鲁比发布了新的文献求助30
3秒前
动听的青曼完成签到,获得积分10
4秒前
思源应助淡淡的酸奶采纳,获得10
4秒前
皮皮虾完成签到,获得积分10
4秒前
彩色梦安发布了新的文献求助10
4秒前
隐形曼青应助gaogao采纳,获得10
5秒前
scainiao完成签到,获得积分10
5秒前
yulin关注了科研通微信公众号
5秒前
西湖渔夫完成签到,获得积分10
5秒前
zhh完成签到,获得积分10
5秒前
chen完成签到,获得积分10
5秒前
樂楽发布了新的文献求助10
5秒前
6秒前
无敌阿东完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
飘逸子轩完成签到,获得积分10
7秒前
koreyoshi发布了新的文献求助10
7秒前
7秒前
mysci发布了新的文献求助10
7秒前
思源应助yuyu采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524025
求助须知:如何正确求助?哪些是违规求助? 4614655
关于积分的说明 14543905
捐赠科研通 4552420
什么是DOI,文献DOI怎么找? 2494845
邀请新用户注册赠送积分活动 1475559
关于科研通互助平台的介绍 1447219