PrunedYOLO-Tracker: An efficient multi-cows basic behavior recognition and tracking technique

跟踪(教育) 人工智能 视频跟踪 计算机科学 修剪 计算机视觉 弹道 模式识别(心理学) 分类 跟踪系统 鉴定(生物学) F1得分 匹配(统计) 对象(语法) 数学 卡尔曼滤波器 统计 物理 天文 生物 植物 情报检索 教育学 心理学 农学
作者
Zhiyang Zheng,Lifeng Qin
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108172-108172 被引量:37
标识
DOI:10.1016/j.compag.2023.108172
摘要

Recognition and tracking of basic cow behaviors in natural environments are critical technologies for cows' health monitoring in smart farming. This study proposes an efficient cow behavior recognition and tracking method (PrunedYOLO-Tracker) to address the main problem of the lack of a real-time and identity-linked approach for analyzing and monitoring cow behaviors. Firstly, the channel pruning algorithm is employed to compress the size and parameters of the base model, YOLO v5l. Secondly, a multi-object tracking (MOT) method, Cascaded-Buffered IoU (C-BIoU), which expands the detection and trajectory matching space by increasing the buffer zone, is proposed to combine the behavior information from detection with the trajectory information from tracking, achieving multi-cows' behavior recognition and tracking. Through experimental verification, the pruned model maintains high detection accuracy while reducing the model size, floating-point operations (FLOPs) and parameters by 73.5%, 76.7% and 74.0%, respectively. Compared to the original model, the pruned model only experiences a slight decrease of 0.2% in F1 score, while achieving a 0.3% increase in mean Average Precision (mAP). In terms of cow tracking performance, when compared to six other multi-object tracking algorithms including DeepSort, DeepMot, OC-Sort, BotSort, StrongSort, and ByteTrack, the proposed method demonstrates the highest High Order Tracking Accuracy (HOTA), Multi-Object Tracking Precision (MOTP) and Identification F1 (IDF1) scores, reaching 72.4%, 86.1% and 80.3%, respectively. The results obtained from testing in multiple cow activity environments demonstrate that the proposed method exhibits excellent performance in behavior recognition and tracking, as well as high-speed processing capabilities, with an average video processing speed of 81 frames per second (FPS). This method possesses the ability to reliably monitor and manage cow behavior in real-time, providing technical support for promptly anomalies detection and cow health status monitoring for dairy farming managers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
慕青应助空城旧梦采纳,获得10
2秒前
2秒前
2秒前
FashionBoy应助DYZ采纳,获得10
2秒前
2秒前
科研好累哦完成签到,获得积分10
2秒前
852应助77不88采纳,获得10
3秒前
3秒前
大力的乐曲完成签到,获得积分10
3秒前
罗备完成签到,获得积分10
4秒前
tooty完成签到,获得积分10
5秒前
dake完成签到,获得积分10
5秒前
Lin发布了新的文献求助10
5秒前
5秒前
Micheallee完成签到,获得积分10
6秒前
卢西完成签到,获得积分10
6秒前
6秒前
wzz发布了新的文献求助10
7秒前
摇落月完成签到,获得积分10
8秒前
科研通AI6应助yangyj采纳,获得10
11秒前
11秒前
11秒前
明亮梦山完成签到 ,获得积分10
12秒前
wdw2501完成签到,获得积分10
12秒前
13秒前
一一完成签到,获得积分10
13秒前
14秒前
DYZ发布了新的文献求助10
14秒前
15秒前
jjh完成签到,获得积分10
16秒前
SciGPT应助超级寒凝采纳,获得10
16秒前
16秒前
17秒前
outlast完成签到,获得积分10
17秒前
18秒前
忐忑的龙猫完成签到 ,获得积分10
18秒前
Harry应助科研好累哦采纳,获得10
18秒前
宗忻发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539728
求助须知:如何正确求助?哪些是违规求助? 4626494
关于积分的说明 14599495
捐赠科研通 4567353
什么是DOI,文献DOI怎么找? 2504016
邀请新用户注册赠送积分活动 1481719
关于科研通互助平台的介绍 1453352