PrunedYOLO-Tracker: An efficient multi-cows basic behavior recognition and tracking technique

跟踪(教育) 人工智能 视频跟踪 计算机科学 修剪 计算机视觉 弹道 模式识别(心理学) 分类 跟踪系统 鉴定(生物学) F1得分 匹配(统计) 对象(语法) 数学 卡尔曼滤波器 统计 物理 植物 天文 情报检索 农学 生物 心理学 教育学
作者
Zhiyang Zheng,Lifeng Qin
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108172-108172 被引量:8
标识
DOI:10.1016/j.compag.2023.108172
摘要

Recognition and tracking of basic cow behaviors in natural environments are critical technologies for cows' health monitoring in smart farming. This study proposes an efficient cow behavior recognition and tracking method (PrunedYOLO-Tracker) to address the main problem of the lack of a real-time and identity-linked approach for analyzing and monitoring cow behaviors. Firstly, the channel pruning algorithm is employed to compress the size and parameters of the base model, YOLO v5l. Secondly, a multi-object tracking (MOT) method, Cascaded-Buffered IoU (C-BIoU), which expands the detection and trajectory matching space by increasing the buffer zone, is proposed to combine the behavior information from detection with the trajectory information from tracking, achieving multi-cows' behavior recognition and tracking. Through experimental verification, the pruned model maintains high detection accuracy while reducing the model size, floating-point operations (FLOPs) and parameters by 73.5%, 76.7% and 74.0%, respectively. Compared to the original model, the pruned model only experiences a slight decrease of 0.2% in F1 score, while achieving a 0.3% increase in mean Average Precision (mAP). In terms of cow tracking performance, when compared to six other multi-object tracking algorithms including DeepSort, DeepMot, OC-Sort, BotSort, StrongSort, and ByteTrack, the proposed method demonstrates the highest High Order Tracking Accuracy (HOTA), Multi-Object Tracking Precision (MOTP) and Identification F1 (IDF1) scores, reaching 72.4%, 86.1% and 80.3%, respectively. The results obtained from testing in multiple cow activity environments demonstrate that the proposed method exhibits excellent performance in behavior recognition and tracking, as well as high-speed processing capabilities, with an average video processing speed of 81 frames per second (FPS). This method possesses the ability to reliably monitor and manage cow behavior in real-time, providing technical support for promptly anomalies detection and cow health status monitoring for dairy farming managers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suliang完成签到,获得积分10
刚刚
Morningstar发布了新的文献求助10
1秒前
落后的小蕊完成签到,获得积分10
2秒前
完美世界应助丶氵一生里采纳,获得10
2秒前
夏侯德东完成签到,获得积分10
2秒前
南兮发布了新的文献求助10
2秒前
3秒前
英姑应助优美的背包采纳,获得10
7秒前
Dreamer完成签到,获得积分10
8秒前
Betty完成签到 ,获得积分10
11秒前
深白魂完成签到 ,获得积分10
13秒前
14秒前
16秒前
iNk应助JamesTYD采纳,获得20
20秒前
大气的不乐完成签到 ,获得积分10
21秒前
21秒前
Allen发布了新的文献求助10
24秒前
三七完成签到 ,获得积分10
27秒前
27秒前
呆萌的太阳完成签到,获得积分10
27秒前
神揽星辰入梦完成签到,获得积分10
28秒前
28秒前
高兴的小完成签到,获得积分10
31秒前
32秒前
乌龙掌柜完成签到 ,获得积分10
33秒前
苏打汽水发布了新的文献求助10
33秒前
33秒前
34秒前
冰冰发布了新的文献求助10
34秒前
haowu发布了新的文献求助10
37秒前
JamesPei应助congjia采纳,获得10
38秒前
YC发布了新的文献求助10
39秒前
冰冰完成签到,获得积分10
40秒前
41秒前
42秒前
小手姑娘完成签到,获得积分10
43秒前
SR4发布了新的文献求助10
44秒前
AuCu发布了新的文献求助10
44秒前
45秒前
46秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161703
求助须知:如何正确求助?哪些是违规求助? 2813001
关于积分的说明 7898208
捐赠科研通 2471974
什么是DOI,文献DOI怎么找? 1316269
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129