PrunedYOLO-Tracker: An efficient multi-cows basic behavior recognition and tracking technique

跟踪(教育) 人工智能 视频跟踪 计算机科学 修剪 计算机视觉 弹道 模式识别(心理学) 分类 跟踪系统 鉴定(生物学) F1得分 匹配(统计) 对象(语法) 数学 卡尔曼滤波器 统计 物理 植物 天文 情报检索 农学 生物 心理学 教育学
作者
Zhiyang Zheng,Lifeng Qin
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108172-108172 被引量:28
标识
DOI:10.1016/j.compag.2023.108172
摘要

Recognition and tracking of basic cow behaviors in natural environments are critical technologies for cows' health monitoring in smart farming. This study proposes an efficient cow behavior recognition and tracking method (PrunedYOLO-Tracker) to address the main problem of the lack of a real-time and identity-linked approach for analyzing and monitoring cow behaviors. Firstly, the channel pruning algorithm is employed to compress the size and parameters of the base model, YOLO v5l. Secondly, a multi-object tracking (MOT) method, Cascaded-Buffered IoU (C-BIoU), which expands the detection and trajectory matching space by increasing the buffer zone, is proposed to combine the behavior information from detection with the trajectory information from tracking, achieving multi-cows' behavior recognition and tracking. Through experimental verification, the pruned model maintains high detection accuracy while reducing the model size, floating-point operations (FLOPs) and parameters by 73.5%, 76.7% and 74.0%, respectively. Compared to the original model, the pruned model only experiences a slight decrease of 0.2% in F1 score, while achieving a 0.3% increase in mean Average Precision (mAP). In terms of cow tracking performance, when compared to six other multi-object tracking algorithms including DeepSort, DeepMot, OC-Sort, BotSort, StrongSort, and ByteTrack, the proposed method demonstrates the highest High Order Tracking Accuracy (HOTA), Multi-Object Tracking Precision (MOTP) and Identification F1 (IDF1) scores, reaching 72.4%, 86.1% and 80.3%, respectively. The results obtained from testing in multiple cow activity environments demonstrate that the proposed method exhibits excellent performance in behavior recognition and tracking, as well as high-speed processing capabilities, with an average video processing speed of 81 frames per second (FPS). This method possesses the ability to reliably monitor and manage cow behavior in real-time, providing technical support for promptly anomalies detection and cow health status monitoring for dairy farming managers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啾啾发布了新的文献求助10
刚刚
邓超完成签到,获得积分10
刚刚
17871635733完成签到,获得积分10
刚刚
今夜小楼一曲完成签到,获得积分10
3秒前
3秒前
4秒前
杨康发布了新的文献求助10
4秒前
5秒前
6秒前
Miranda发布了新的文献求助10
6秒前
如意山晴完成签到 ,获得积分10
8秒前
8秒前
伟@完成签到 ,获得积分10
8秒前
10秒前
10秒前
曾经飞烟完成签到,获得积分10
11秒前
zhengyalan完成签到 ,获得积分10
12秒前
12秒前
April完成签到,获得积分10
12秒前
一吃就饱发布了新的文献求助10
14秒前
李卷卷发布了新的文献求助10
14秒前
徐小徐发布了新的文献求助10
15秒前
KOKOGOGO发布了新的文献求助10
16秒前
霖霖发布了新的文献求助10
16秒前
17秒前
Ru完成签到,获得积分10
17秒前
希望天下0贩的0应助紫芋采纳,获得10
18秒前
啾啾完成签到,获得积分10
18秒前
张三驳回了今后应助
18秒前
明理平文完成签到 ,获得积分10
19秒前
田様应助yangou采纳,获得10
19秒前
20秒前
幸运星完成签到 ,获得积分10
21秒前
在水一方应助施傲天采纳,获得10
21秒前
勤奋火龙果完成签到,获得积分20
21秒前
ZHH发布了新的文献求助10
22秒前
23秒前
xf潇洒哥发布了新的文献求助20
24秒前
情怀应助徐小徐采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898662
求助须知:如何正确求助?哪些是违规求助? 4179345
关于积分的说明 12974628
捐赠科研通 3943264
什么是DOI,文献DOI怎么找? 2163262
邀请新用户注册赠送积分活动 1181613
关于科研通互助平台的介绍 1087229