PrunedYOLO-Tracker: An efficient multi-cows basic behavior recognition and tracking technique

跟踪(教育) 人工智能 视频跟踪 计算机科学 修剪 计算机视觉 弹道 模式识别(心理学) 分类 跟踪系统 鉴定(生物学) F1得分 匹配(统计) 对象(语法) 数学 卡尔曼滤波器 统计 物理 植物 天文 情报检索 农学 生物 心理学 教育学
作者
Zhiyang Zheng,Lifeng Qin
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108172-108172 被引量:16
标识
DOI:10.1016/j.compag.2023.108172
摘要

Recognition and tracking of basic cow behaviors in natural environments are critical technologies for cows' health monitoring in smart farming. This study proposes an efficient cow behavior recognition and tracking method (PrunedYOLO-Tracker) to address the main problem of the lack of a real-time and identity-linked approach for analyzing and monitoring cow behaviors. Firstly, the channel pruning algorithm is employed to compress the size and parameters of the base model, YOLO v5l. Secondly, a multi-object tracking (MOT) method, Cascaded-Buffered IoU (C-BIoU), which expands the detection and trajectory matching space by increasing the buffer zone, is proposed to combine the behavior information from detection with the trajectory information from tracking, achieving multi-cows' behavior recognition and tracking. Through experimental verification, the pruned model maintains high detection accuracy while reducing the model size, floating-point operations (FLOPs) and parameters by 73.5%, 76.7% and 74.0%, respectively. Compared to the original model, the pruned model only experiences a slight decrease of 0.2% in F1 score, while achieving a 0.3% increase in mean Average Precision (mAP). In terms of cow tracking performance, when compared to six other multi-object tracking algorithms including DeepSort, DeepMot, OC-Sort, BotSort, StrongSort, and ByteTrack, the proposed method demonstrates the highest High Order Tracking Accuracy (HOTA), Multi-Object Tracking Precision (MOTP) and Identification F1 (IDF1) scores, reaching 72.4%, 86.1% and 80.3%, respectively. The results obtained from testing in multiple cow activity environments demonstrate that the proposed method exhibits excellent performance in behavior recognition and tracking, as well as high-speed processing capabilities, with an average video processing speed of 81 frames per second (FPS). This method possesses the ability to reliably monitor and manage cow behavior in real-time, providing technical support for promptly anomalies detection and cow health status monitoring for dairy farming managers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助biofresh采纳,获得10
刚刚
糕糕完成签到,获得积分10
刚刚
刚刚
xuxingxing完成签到,获得积分10
1秒前
Jasmine完成签到,获得积分10
1秒前
热爱完成签到,获得积分10
1秒前
1秒前
益气聪明张完成签到,获得积分10
2秒前
Akim应助稀罕你采纳,获得10
2秒前
3秒前
外向的芫完成签到,获得积分10
3秒前
3秒前
李健的小迷弟应助zzx采纳,获得10
4秒前
暮桉发布了新的文献求助10
4秒前
老猪佩奇完成签到,获得积分10
4秒前
4秒前
昏睡的灯泡完成签到,获得积分20
5秒前
曹超国发布了新的文献求助30
5秒前
猪猪hero发布了新的文献求助10
5秒前
柠A发布了新的文献求助10
5秒前
隐形曼青应助九城采纳,获得10
5秒前
华仔应助TT采纳,获得10
5秒前
drhh发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
JayeChen完成签到,获得积分10
6秒前
唐新惠完成签到 ,获得积分10
8秒前
阿呷惹发布了新的文献求助10
8秒前
所所应助pp1230采纳,获得10
9秒前
我是老大应助拾伍采纳,获得10
9秒前
皮颤发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
ttt发布了新的文献求助10
11秒前
NexusExplorer应助gx采纳,获得20
11秒前
太多完成签到,获得积分10
11秒前
12秒前
科研通AI5应助丰富无色采纳,获得10
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3658616
求助须知:如何正确求助?哪些是违规求助? 3220669
关于积分的说明 9736872
捐赠科研通 2929813
什么是DOI,文献DOI怎么找? 1604106
邀请新用户注册赠送积分活动 756967
科研通“疑难数据库(出版商)”最低求助积分说明 734269