SwinFace: A Multi-Task Transformer for Face Recognition, Expression Recognition, Age Estimation and Attribute Estimation

计算机科学 面部识别系统 人工智能 模式识别(心理学) 变压器 估计 人脸检测 计算机视觉 工程类 电压 电气工程 系统工程
作者
Lixiong Qin,Mei Wang,Chao Deng,Ke Wang,Xi Chen,Jiani Hu,Weihong Deng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (4): 2223-2234 被引量:19
标识
DOI:10.1109/tcsvt.2023.3304724
摘要

In recent years, vision transformers have been introduced into face recognition and analysis and have achieved performance breakthroughs. However, most previous methods generally train a single model or an ensemble of models to perform the desired task, which ignores the synergy among different tasks and fails to achieve improved prediction accuracy, increased data efficiency, and reduced training time. This paper presents a multi-purpose algorithm for simultaneous face recognition, facial expression recognition, age estimation, and face attribute estimation (40 attributes including gender) based on a single Swin Transformer. Our design, the SwinFace, consists of a single shared backbone together with a subnet for each set of related tasks. To address the conflicts among multiple tasks and meet the different demands of tasks, a Multi-Level Channel Attention (MLCA) module is integrated into each task-specific analysis subnet, which can adaptively select the features from optimal levels and channels to perform the desired tasks. Extensive experiments show that the proposed model has a better understanding of the face and achieves excellent performance for all tasks. Especially, it achieves 90.97% accuracy on RAF-DB and 0.22 $\epsilon$-error on CLAP2015, which are state-of-the-art results on facial expression recognition and age estimation respectively. The code and models will be made publicly available at https://github.com/lxq1000/SwinFace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiangjiang发布了新的文献求助10
刚刚
kevin发布了新的文献求助10
刚刚
首席医官完成签到,获得积分10
1秒前
Ma发布了新的文献求助10
2秒前
2秒前
何三岁发布了新的文献求助10
4秒前
欣喜的迎夏完成签到,获得积分10
4秒前
荀煜祺完成签到,获得积分10
5秒前
iron完成签到,获得积分10
5秒前
8R60d8给hwq123的求助进行了留言
8秒前
充电宝应助包容绿海采纳,获得10
9秒前
11秒前
11秒前
11秒前
12秒前
微笑的冰烟完成签到,获得积分10
14秒前
小李同学完成签到,获得积分10
15秒前
16秒前
17秒前
wuyu发布了新的文献求助30
17秒前
zzzzzx发布了新的文献求助20
18秒前
yud完成签到 ,获得积分10
18秒前
Aurora完成签到 ,获得积分10
19秒前
辞忧完成签到 ,获得积分10
19秒前
小二郎应助songyy采纳,获得10
19秒前
20秒前
21秒前
Bobo发布了新的文献求助10
22秒前
衬衫完成签到,获得积分10
24秒前
25秒前
beiyangtidu发布了新的文献求助30
25秒前
26秒前
善学以致用应助阿珩采纳,获得10
26秒前
26秒前
28秒前
29秒前
31秒前
32秒前
阿瑞发布了新的文献求助10
33秒前
科研通AI2S应助春风知我意采纳,获得10
35秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244487
求助须知:如何正确求助?哪些是违规求助? 2888154
关于积分的说明 8251609
捐赠科研通 2556592
什么是DOI,文献DOI怎么找? 1385076
科研通“疑难数据库(出版商)”最低求助积分说明 649980
邀请新用户注册赠送积分活动 626102