亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel multimodal framework for early diagnosis and classification of COPD based on CT scan images and multivariate pulmonary respiratory diseases

慢性阻塞性肺病 人工智能 计算机科学 医学影像学 呼吸音 医学 直方图 模式识别(心理学) 放射科 机器学习 图像(数学) 哮喘 内科学
作者
Santosh Kumar,Vijesh Bhagat,Prakash Sahu,Mithliesh Kumar Chaube,Ajoy Kumar Behera,Mohsen Guizani,Raffaele Gravina,Michele Di Dio,Giancarlo Fortino,Edward Curry,Saeed Hamood Alsamhi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:243: 107911-107911 被引量:29
标识
DOI:10.1016/j.cmpb.2023.107911
摘要

Chronic Obstructive Pulmonary Disease (COPD) is one of the world's worst diseases; its early diagnosis using existing methods like statistical machine learning techniques, medical diagnostic tools, conventional medical procedures, and other methods is challenging due to misclassification results of COPD diagnosis and takes a long time to perform accurate prediction. Due to the severe consequences of COPD, detection and accurate diagnosis of COPD at an early stage is essential. This paper aims to design and develop a multimodal framework for early diagnosis and accurate prediction of COPD patients based on prepared Computerized Tomography (CT) scan images and lung sound/cough (audio) samples using machine learning techniques, which are presented in this study. The proposed multimodal framework extracts texture, histogram intensity, chroma, Mel-Frequency Cepstral Coefficients (MFCCs), and Gaussian scale space from the prepared CT images and lung sound/cough samples. Accurate data from All India Institute Medical Sciences (AIIMS), Raipur, India, and the open respiratory CT images and lung sound/cough (audio) sample dataset validate the proposed framework. The discriminatory features are selected from the extracted feature sets using unsupervised ML techniques, and customized ensemble learning techniques are applied to perform early classification and assess the severity levels of COPD patients. The proposed framework provided 97.50%, 98%, and 95.30% accuracy for early diagnosis of COPD patients based on the fusion technique, CT diagnostic model, and cough sample model. Finally, we compare the performance of the proposed framework with existing methods, current approaches, and conventional benchmark techniques for early diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老迟到的友桃完成签到 ,获得积分10
刚刚
ceeray23发布了新的文献求助20
2秒前
tingalan应助科研通管家采纳,获得10
7秒前
bookgg完成签到 ,获得积分10
10秒前
16秒前
ZgnomeshghT发布了新的文献求助10
21秒前
善学以致用应助ZgnomeshghT采纳,获得10
29秒前
33秒前
49秒前
1分钟前
1分钟前
1分钟前
1分钟前
孤独剑完成签到 ,获得积分10
1分钟前
科研通AI2S应助ceeray23采纳,获得20
1分钟前
量子星尘发布了新的文献求助100
1分钟前
1分钟前
1分钟前
tingalan应助科研通管家采纳,获得10
2分钟前
老石完成签到 ,获得积分10
3分钟前
ln完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
wanli发布了新的文献求助10
3分钟前
CRUSADER发布了新的文献求助100
4分钟前
HongqiZhang完成签到 ,获得积分0
4分钟前
CRUSADER完成签到,获得积分10
4分钟前
5分钟前
5分钟前
充电宝应助wanli采纳,获得10
5分钟前
5分钟前
桐桐应助jarrykim采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
John完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889480
求助须知:如何正确求助?哪些是违规求助? 4173477
关于积分的说明 12952093
捐赠科研通 3934926
什么是DOI,文献DOI怎么找? 2159102
邀请新用户注册赠送积分活动 1177454
关于科研通互助平台的介绍 1082281