A novel multimodal framework for early diagnosis and classification of COPD based on CT scan images and multivariate pulmonary respiratory diseases

慢性阻塞性肺病 人工智能 计算机科学 医学影像学 呼吸音 医学 直方图 模式识别(心理学) 放射科 机器学习 图像(数学) 哮喘 内科学
作者
Santosh Kumar,Vijesh Bhagat,Prakash Sahu,Mithliesh Kumar Chaube,Ajoy Kumar Behera,Mohsen Guizani,Raffaele Gravina,Michele Di Dio,Giancarlo Fortino,Edward Curry,Saeed Hamood Alsamhi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:243: 107911-107911 被引量:11
标识
DOI:10.1016/j.cmpb.2023.107911
摘要

Chronic Obstructive Pulmonary Disease (COPD) is one of the world's worst diseases; its early diagnosis using existing methods like statistical machine learning techniques, medical diagnostic tools, conventional medical procedures, and other methods is challenging due to misclassification results of COPD diagnosis and takes a long time to perform accurate prediction. Due to the severe consequences of COPD, detection and accurate diagnosis of COPD at an early stage is essential. This paper aims to design and develop a multimodal framework for early diagnosis and accurate prediction of COPD patients based on prepared Computerized Tomography (CT) scan images and lung sound/cough (audio) samples using machine learning techniques, which are presented in this study. The proposed multimodal framework extracts texture, histogram intensity, chroma, Mel-Frequency Cepstral Coefficients (MFCCs), and Gaussian scale space from the prepared CT images and lung sound/cough samples. Accurate data from All India Institute Medical Sciences (AIIMS), Raipur, India, and the open respiratory CT images and lung sound/cough (audio) sample dataset validate the proposed framework. The discriminatory features are selected from the extracted feature sets using unsupervised ML techniques, and customized ensemble learning techniques are applied to perform early classification and assess the severity levels of COPD patients. The proposed framework provided 97.50%, 98%, and 95.30% accuracy for early diagnosis of COPD patients based on the fusion technique, CT diagnostic model, and cough sample model. Finally, we compare the performance of the proposed framework with existing methods, current approaches, and conventional benchmark techniques for early diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jinnianlun发布了新的文献求助20
1秒前
2秒前
nico完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
落寞鱼发布了新的文献求助10
5秒前
Soojin完成签到,获得积分10
6秒前
6秒前
温水发布了新的文献求助10
6秒前
今后应助远了个方采纳,获得10
7秒前
爆米花应助远了个方采纳,获得10
7秒前
科研通AI2S应助远了个方采纳,获得10
7秒前
Hello应助远了个方采纳,获得10
7秒前
田様应助远了个方采纳,获得10
7秒前
Hello应助远了个方采纳,获得10
7秒前
7秒前
Lucas应助远了个方采纳,获得10
7秒前
领导范儿应助远了个方采纳,获得10
7秒前
星辰大海应助远了个方采纳,获得10
7秒前
浅尝离白应助皓月采纳,获得30
8秒前
漂亮问筠发布了新的文献求助10
9秒前
维c泡腾片发布了新的文献求助10
9秒前
Akim应助裘文献采纳,获得10
9秒前
共享精神应助火星上若烟采纳,获得10
10秒前
11秒前
林夏发布了新的文献求助10
11秒前
12秒前
12秒前
abccd完成签到,获得积分10
13秒前
可爱的函函应助jeffery111采纳,获得10
13秒前
14秒前
14秒前
15秒前
彭于晏应助123采纳,获得10
16秒前
JamesPei应助lala采纳,获得10
16秒前
大观天下完成签到,获得积分10
16秒前
在水一方应助大蟋蟀采纳,获得10
16秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444074
求助须知:如何正确求助?哪些是违规求助? 3040086
关于积分的说明 8980149
捐赠科研通 2728773
什么是DOI,文献DOI怎么找? 1496652
科研通“疑难数据库(出版商)”最低求助积分说明 691803
邀请新用户注册赠送积分活动 689384