A novel multimodal framework for early diagnosis and classification of COPD based on CT scan images and multivariate pulmonary respiratory diseases

慢性阻塞性肺病 人工智能 计算机科学 医学影像学 呼吸音 医学 直方图 模式识别(心理学) 放射科 机器学习 图像(数学) 哮喘 内科学
作者
Santosh Kumar,Vijesh Bhagat,Prakash Sahu,Mithliesh Kumar Chaube,Ajoy Kumar Behera,Mohsen Guizani,Raffaele Gravina,Michele Di Dio,Giancarlo Fortino,Edward Curry,Saeed Hamood Alsamhi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:243: 107911-107911 被引量:11
标识
DOI:10.1016/j.cmpb.2023.107911
摘要

Chronic Obstructive Pulmonary Disease (COPD) is one of the world's worst diseases; its early diagnosis using existing methods like statistical machine learning techniques, medical diagnostic tools, conventional medical procedures, and other methods is challenging due to misclassification results of COPD diagnosis and takes a long time to perform accurate prediction. Due to the severe consequences of COPD, detection and accurate diagnosis of COPD at an early stage is essential. This paper aims to design and develop a multimodal framework for early diagnosis and accurate prediction of COPD patients based on prepared Computerized Tomography (CT) scan images and lung sound/cough (audio) samples using machine learning techniques, which are presented in this study. The proposed multimodal framework extracts texture, histogram intensity, chroma, Mel-Frequency Cepstral Coefficients (MFCCs), and Gaussian scale space from the prepared CT images and lung sound/cough samples. Accurate data from All India Institute Medical Sciences (AIIMS), Raipur, India, and the open respiratory CT images and lung sound/cough (audio) sample dataset validate the proposed framework. The discriminatory features are selected from the extracted feature sets using unsupervised ML techniques, and customized ensemble learning techniques are applied to perform early classification and assess the severity levels of COPD patients. The proposed framework provided 97.50%, 98%, and 95.30% accuracy for early diagnosis of COPD patients based on the fusion technique, CT diagnostic model, and cough sample model. Finally, we compare the performance of the proposed framework with existing methods, current approaches, and conventional benchmark techniques for early diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助牛牛采纳,获得10
2秒前
能干的茗发布了新的文献求助10
3秒前
欧阳正义发布了新的文献求助10
4秒前
4秒前
清脆南蕾发布了新的文献求助10
5秒前
852应助tomorrow9采纳,获得10
6秒前
凉薄少年应助乐观碧彤采纳,获得10
6秒前
李爱国应助夔kk采纳,获得10
7秒前
凉薄少年应助刘先生采纳,获得10
8秒前
xxttt完成签到,获得积分10
14秒前
16秒前
xunxunmimi完成签到,获得积分10
17秒前
天天快乐应助明明明采纳,获得30
17秒前
啦啦啦完成签到,获得积分10
18秒前
谢逸轩发布了新的文献求助10
19秒前
英姑应助行路人采纳,获得20
20秒前
jiangwei完成签到 ,获得积分10
20秒前
完美世界应助涵泽采纳,获得10
22秒前
25秒前
纯真的觅露完成签到,获得积分20
25秒前
sjdghgdhs发布了新的文献求助10
26秒前
Tony12完成签到,获得积分10
26秒前
星星轨迹发布了新的文献求助10
29秒前
谢逸轩完成签到,获得积分10
29秒前
29秒前
艺涵发布了新的文献求助10
30秒前
SciGPT应助叶小文采纳,获得10
30秒前
cyn0762发布了新的文献求助10
31秒前
32秒前
spyspy完成签到,获得积分10
32秒前
林佳一完成签到,获得积分10
34秒前
城南烤地瓜完成签到 ,获得积分10
34秒前
35秒前
等等完成签到 ,获得积分10
37秒前
wanci应助mzc采纳,获得10
37秒前
一条咸鱼发布了新的文献求助10
37秒前
39秒前
某只兔子完成签到,获得积分10
40秒前
大模型应助一条咸鱼采纳,获得10
41秒前
行路人发布了新的文献求助20
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498