亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel multimodal framework for early diagnosis and classification of COPD based on CT scan images and multivariate pulmonary respiratory diseases

慢性阻塞性肺病 人工智能 计算机科学 医学影像学 呼吸音 医学 直方图 模式识别(心理学) 放射科 机器学习 图像(数学) 哮喘 内科学
作者
Santosh Kumar,Vijesh Bhagat,Prakash Sahu,Mithliesh Kumar Chaube,Ajoy Kumar Behera,Mohsen Guizani,Raffaele Gravina,Michele Di Dio,Giancarlo Fortino,Edward Curry,Saeed Hamood Alsamhi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:243: 107911-107911 被引量:52
标识
DOI:10.1016/j.cmpb.2023.107911
摘要

Chronic Obstructive Pulmonary Disease (COPD) is one of the world's worst diseases; its early diagnosis using existing methods like statistical machine learning techniques, medical diagnostic tools, conventional medical procedures, and other methods is challenging due to misclassification results of COPD diagnosis and takes a long time to perform accurate prediction. Due to the severe consequences of COPD, detection and accurate diagnosis of COPD at an early stage is essential. This paper aims to design and develop a multimodal framework for early diagnosis and accurate prediction of COPD patients based on prepared Computerized Tomography (CT) scan images and lung sound/cough (audio) samples using machine learning techniques, which are presented in this study. The proposed multimodal framework extracts texture, histogram intensity, chroma, Mel-Frequency Cepstral Coefficients (MFCCs), and Gaussian scale space from the prepared CT images and lung sound/cough samples. Accurate data from All India Institute Medical Sciences (AIIMS), Raipur, India, and the open respiratory CT images and lung sound/cough (audio) sample dataset validate the proposed framework. The discriminatory features are selected from the extracted feature sets using unsupervised ML techniques, and customized ensemble learning techniques are applied to perform early classification and assess the severity levels of COPD patients. The proposed framework provided 97.50%, 98%, and 95.30% accuracy for early diagnosis of COPD patients based on the fusion technique, CT diagnostic model, and cough sample model. Finally, we compare the performance of the proposed framework with existing methods, current approaches, and conventional benchmark techniques for early diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研王者发布了新的文献求助10
4秒前
老万的小迷弟完成签到,获得积分10
5秒前
JoeyJin完成签到,获得积分10
10秒前
我是老大应助科研王者采纳,获得10
10秒前
56秒前
yeeeee发布了新的文献求助10
1分钟前
ttkx发布了新的文献求助10
1分钟前
CipherSage应助yeeeee采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
artos发布了新的文献求助30
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
科研通AI6应助artos采纳,获得10
2分钟前
华仔应助CC采纳,获得30
3分钟前
3分钟前
CC发布了新的文献求助30
3分钟前
执着梦柏完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
4分钟前
清晨仪仪发布了新的文献求助30
4分钟前
5分钟前
步念发布了新的文献求助30
5分钟前
科研通AI6应助步念采纳,获得30
5分钟前
Ava应助查莉采纳,获得10
5分钟前
清晨仪仪发布了新的文献求助10
5分钟前
麻辣香锅发布了新的文献求助10
6分钟前
科研通AI6应助CC采纳,获得10
6分钟前
李李爱种花完成签到 ,获得积分10
6分钟前
6分钟前
查莉发布了新的文献求助10
6分钟前
6分钟前
科研通AI6应助麻辣香锅采纳,获得10
6分钟前
7分钟前
7分钟前
小萌兽完成签到 ,获得积分10
8分钟前
ysy完成签到,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622241
求助须知:如何正确求助?哪些是违规求助? 4707275
关于积分的说明 14938986
捐赠科研通 4769648
什么是DOI,文献DOI怎么找? 2552255
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475053