A new population initialization of metaheuristic algorithms based on hybrid fuzzy rough set for high-dimensional gene data feature selection

初始化 特征选择 计算机科学 元启发式 滤波器(信号处理) 人口 人工智能 数据挖掘 特征(语言学) 算法 模糊逻辑 遗传算法 粗集 维数之咒 机器学习 模式识别(心理学) 哲学 社会学 人口学 程序设计语言 语言学 计算机视觉
作者
Xuanming Guo,Jiao Hu,Helong Yu,Mingjing Wang,Bo Yang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107538-107538 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107538
摘要

In the realm of modern medicine and biology, vast amounts of genetic data with high complexity are available. However, dealing with such high-dimensional data poses challenges due to increased processing complexity and size. Identifying critical genes to reduce data dimensionality is essential. The filter-wrapper hybrid method is a commonly used approach in feature selection. Most of these methods employ filters such as MRMR and ReliefF, but the performance of these simple filters is limited. Rough set methods, on the other hand, are a type of filter method that outperforms traditional filters. Simultaneously, many studies have pointed out the crucial importance of good initialization strategies for the performance of the metaheuristic algorithm (a type of wrapper-based method). Combining these two points, this paper proposes a novel filter-wrapper hybrid method for high-dimensional feature selection. To be specific, we utilize the variant of bWOA (binary Whale Optimization Algorithm) based on Hybrid Fuzzy Rough Set to perform attribute reduction, and the reduced attributes are used as prior knowledge to initialize the population. We then employ metaheuristics for further feature selection based on this initialized population. We conducted experiments using five different algorithms on 14 UCI datasets. The experiment results show that after applying the initialization method proposed in this article, the performance of five enhanced algorithms, has shown significant improvement. Particularly, the improved bMFO using our initialization method: fuzzy_bMFO outperformed six currently advanced algorithms, indicating that our initialization method for metaheuristic algorithms is suitable for high-dimensional feature selection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhaorf完成签到,获得积分10
1秒前
沉默紫槐完成签到,获得积分10
1秒前
深情安青应助易达采纳,获得10
1秒前
默默海露发布了新的文献求助10
3秒前
4秒前
flyfish完成签到,获得积分10
4秒前
36456657应助chen采纳,获得10
4秒前
每念至此完成签到,获得积分10
5秒前
大力黑米完成签到 ,获得积分10
6秒前
123发布了新的文献求助30
6秒前
搜集达人应助gaos采纳,获得10
6秒前
hengy发布了新的文献求助10
6秒前
杳鸢应助Xenia采纳,获得10
7秒前
kekekelili完成签到,获得积分10
8秒前
8秒前
zhonghbush发布了新的文献求助10
9秒前
reck发布了新的文献求助10
9秒前
9秒前
9秒前
kimcandy完成签到,获得积分10
9秒前
华仔应助任品贤采纳,获得10
10秒前
无花果应助急雪回风采纳,获得10
10秒前
12秒前
曾经的灵完成签到,获得积分20
12秒前
bkagyin应助小宇采纳,获得10
12秒前
许之北完成签到 ,获得积分10
12秒前
12秒前
船舵发布了新的文献求助10
12秒前
gaos完成签到,获得积分10
13秒前
念念发布了新的文献求助10
13秒前
An_mie完成签到,获得积分10
13秒前
13秒前
13秒前
Arabella完成签到,获得积分10
14秒前
HEIKU应助追梦人采纳,获得10
14秒前
14秒前
小T儿发布了新的文献求助10
14秒前
852应助woxiangbiye采纳,获得10
14秒前
飞羽完成签到,获得积分10
15秒前
Owen应助cherry采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672