已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new population initialization of metaheuristic algorithms based on hybrid fuzzy rough set for high-dimensional gene data feature selection

初始化 特征选择 计算机科学 元启发式 滤波器(信号处理) 人口 人工智能 数据挖掘 特征(语言学) 算法 模糊逻辑 遗传算法 粗集 维数之咒 机器学习 模式识别(心理学) 哲学 社会学 人口学 程序设计语言 语言学 计算机视觉
作者
Xuanming Guo,Jiao Hu,Helong Yu,Mingjing Wang,Bo Yang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107538-107538 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107538
摘要

In the realm of modern medicine and biology, vast amounts of genetic data with high complexity are available. However, dealing with such high-dimensional data poses challenges due to increased processing complexity and size. Identifying critical genes to reduce data dimensionality is essential. The filter-wrapper hybrid method is a commonly used approach in feature selection. Most of these methods employ filters such as MRMR and ReliefF, but the performance of these simple filters is limited. Rough set methods, on the other hand, are a type of filter method that outperforms traditional filters. Simultaneously, many studies have pointed out the crucial importance of good initialization strategies for the performance of the metaheuristic algorithm (a type of wrapper-based method). Combining these two points, this paper proposes a novel filter-wrapper hybrid method for high-dimensional feature selection. To be specific, we utilize the variant of bWOA (binary Whale Optimization Algorithm) based on Hybrid Fuzzy Rough Set to perform attribute reduction, and the reduced attributes are used as prior knowledge to initialize the population. We then employ metaheuristics for further feature selection based on this initialized population. We conducted experiments using five different algorithms on 14 UCI datasets. The experiment results show that after applying the initialization method proposed in this article, the performance of five enhanced algorithms, has shown significant improvement. Particularly, the improved bMFO using our initialization method: fuzzy_bMFO outperformed six currently advanced algorithms, indicating that our initialization method for metaheuristic algorithms is suitable for high-dimensional feature selection tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dirk完成签到 ,获得积分10
1秒前
tanrui发布了新的文献求助10
3秒前
十月木樨发布了新的文献求助10
4秒前
4秒前
十分红处竟成灰完成签到 ,获得积分20
5秒前
meihui完成签到 ,获得积分10
6秒前
7秒前
科研通AI6应助玻璃弹珠采纳,获得10
9秒前
jkkkwang发布了新的文献求助10
10秒前
12秒前
smm完成签到 ,获得积分10
13秒前
14秒前
朱加德发布了新的文献求助10
14秒前
命苦科研人完成签到,获得积分10
15秒前
16秒前
知弈否发布了新的文献求助10
18秒前
Orange应助命苦科研人采纳,获得10
19秒前
小二郎应助十月木樨采纳,获得10
19秒前
20秒前
BowieHuang应助科研通管家采纳,获得10
20秒前
20秒前
Ava应助無端采纳,获得10
21秒前
大模型应助米可熊采纳,获得20
24秒前
24秒前
英俊的铭应助朱加德采纳,获得10
25秒前
CodeCraft应助小赖想睡觉采纳,获得10
25秒前
zyy应助无语的万言采纳,获得10
29秒前
30秒前
32秒前
Werner完成签到 ,获得积分10
32秒前
hh完成签到,获得积分10
34秒前
34秒前
知弈否完成签到,获得积分10
34秒前
35秒前
甜美依云完成签到,获得积分10
38秒前
JiahaoRao应助鸣风采纳,获得30
38秒前
002完成签到,获得积分10
39秒前
Emma发布了新的文献求助10
39秒前
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542985
求助须知:如何正确求助?哪些是违规求助? 4629125
关于积分的说明 14610877
捐赠科研通 4570403
什么是DOI,文献DOI怎么找? 2505738
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454361