A new population initialization of metaheuristic algorithms based on hybrid fuzzy rough set for high-dimensional gene data feature selection

初始化 特征选择 计算机科学 元启发式 滤波器(信号处理) 人口 人工智能 数据挖掘 特征(语言学) 算法 模糊逻辑 遗传算法 粗集 维数之咒 机器学习 模式识别(心理学) 语言学 哲学 人口学 社会学 计算机视觉 程序设计语言
作者
Xuanming Guo,Jiao Hu,Helong Yu,Mingjing Wang,Bo Yang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107538-107538 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107538
摘要

In the realm of modern medicine and biology, vast amounts of genetic data with high complexity are available. However, dealing with such high-dimensional data poses challenges due to increased processing complexity and size. Identifying critical genes to reduce data dimensionality is essential. The filter-wrapper hybrid method is a commonly used approach in feature selection. Most of these methods employ filters such as MRMR and ReliefF, but the performance of these simple filters is limited. Rough set methods, on the other hand, are a type of filter method that outperforms traditional filters. Simultaneously, many studies have pointed out the crucial importance of good initialization strategies for the performance of the metaheuristic algorithm (a type of wrapper-based method). Combining these two points, this paper proposes a novel filter-wrapper hybrid method for high-dimensional feature selection. To be specific, we utilize the variant of bWOA (binary Whale Optimization Algorithm) based on Hybrid Fuzzy Rough Set to perform attribute reduction, and the reduced attributes are used as prior knowledge to initialize the population. We then employ metaheuristics for further feature selection based on this initialized population. We conducted experiments using five different algorithms on 14 UCI datasets. The experiment results show that after applying the initialization method proposed in this article, the performance of five enhanced algorithms, has shown significant improvement. Particularly, the improved bMFO using our initialization method: fuzzy_bMFO outperformed six currently advanced algorithms, indicating that our initialization method for metaheuristic algorithms is suitable for high-dimensional feature selection tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
spc68应助魂断红颜采纳,获得10
1秒前
梁子明完成签到,获得积分20
1秒前
Vashon发布了新的文献求助10
1秒前
1秒前
庸俗完成签到,获得积分10
1秒前
ZeKaWa应助leslie采纳,获得10
1秒前
奇迹世界完成签到,获得积分10
2秒前
clark发布了新的文献求助10
2秒前
2秒前
云汐儿完成签到,获得积分10
2秒前
2秒前
WGK发布了新的文献求助10
2秒前
桐桐应助嗯嗯哈哈采纳,获得10
3秒前
中和皇极应助dwarf采纳,获得10
3秒前
科研通AI6应助林瑶采纳,获得10
3秒前
白沙完成签到,获得积分10
4秒前
4秒前
Hhhhh发布了新的文献求助10
5秒前
5秒前
Lucas应助sunshine采纳,获得10
5秒前
平常的飞风完成签到,获得积分10
5秒前
wanci应助坦率的世开采纳,获得10
5秒前
6秒前
斯文败类应助沉默的美女采纳,获得10
6秒前
无花果应助pups采纳,获得10
6秒前
晨晨发布了新的文献求助10
6秒前
7秒前
瓜6完成签到,获得积分10
8秒前
8秒前
威武雪兰完成签到,获得积分10
8秒前
星辰大海应助11采纳,获得10
8秒前
令狐发布了新的文献求助10
8秒前
lpk发布了新的文献求助10
8秒前
依米医意发布了新的文献求助10
9秒前
9秒前
ZZY发布了新的文献求助10
9秒前
一灯大师发布了新的文献求助10
9秒前
yunyun发布了新的文献求助10
9秒前
ZeKaWa应助FLZLC采纳,获得10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619405
求助须知:如何正确求助?哪些是违规求助? 4704160
关于积分的说明 14926129
捐赠科研通 4759826
什么是DOI,文献DOI怎么找? 2550547
邀请新用户注册赠送积分活动 1513336
关于科研通互助平台的介绍 1474401