A new population initialization of metaheuristic algorithms based on hybrid fuzzy rough set for high-dimensional gene data feature selection

初始化 特征选择 计算机科学 元启发式 滤波器(信号处理) 人口 人工智能 数据挖掘 特征(语言学) 算法 模糊逻辑 遗传算法 粗集 维数之咒 机器学习 模式识别(心理学) 语言学 哲学 人口学 社会学 计算机视觉 程序设计语言
作者
Xuanming Guo,Jiao Hu,Helong Yu,Mingjing Wang,Bo Yang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107538-107538 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107538
摘要

In the realm of modern medicine and biology, vast amounts of genetic data with high complexity are available. However, dealing with such high-dimensional data poses challenges due to increased processing complexity and size. Identifying critical genes to reduce data dimensionality is essential. The filter-wrapper hybrid method is a commonly used approach in feature selection. Most of these methods employ filters such as MRMR and ReliefF, but the performance of these simple filters is limited. Rough set methods, on the other hand, are a type of filter method that outperforms traditional filters. Simultaneously, many studies have pointed out the crucial importance of good initialization strategies for the performance of the metaheuristic algorithm (a type of wrapper-based method). Combining these two points, this paper proposes a novel filter-wrapper hybrid method for high-dimensional feature selection. To be specific, we utilize the variant of bWOA (binary Whale Optimization Algorithm) based on Hybrid Fuzzy Rough Set to perform attribute reduction, and the reduced attributes are used as prior knowledge to initialize the population. We then employ metaheuristics for further feature selection based on this initialized population. We conducted experiments using five different algorithms on 14 UCI datasets. The experiment results show that after applying the initialization method proposed in this article, the performance of five enhanced algorithms, has shown significant improvement. Particularly, the improved bMFO using our initialization method: fuzzy_bMFO outperformed six currently advanced algorithms, indicating that our initialization method for metaheuristic algorithms is suitable for high-dimensional feature selection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助高骏伟采纳,获得10
2秒前
Lucas应助雷小牛采纳,获得10
2秒前
2秒前
苹果完成签到 ,获得积分10
2秒前
AKA蜻蜓队长完成签到,获得积分10
3秒前
gtgyh完成签到 ,获得积分10
3秒前
4秒前
dbndlk完成签到,获得积分10
4秒前
123完成签到,获得积分10
7秒前
dd36完成签到,获得积分10
7秒前
ommphey完成签到 ,获得积分10
9秒前
11秒前
13秒前
13秒前
19秒前
19秒前
稳重秋寒完成签到 ,获得积分10
19秒前
勤恳的小小完成签到,获得积分10
19秒前
高骏伟发布了新的文献求助10
21秒前
努力看文献的卑微打工人完成签到,获得积分10
21秒前
执着晓亦发布了新的文献求助10
22秒前
小郑好好搞科研完成签到,获得积分10
22秒前
AnYX完成签到 ,获得积分10
23秒前
哎呀哎呀25完成签到,获得积分10
24秒前
rjlala发布了新的文献求助10
24秒前
呆萌滑板完成签到 ,获得积分10
26秒前
烟花应助maybe采纳,获得30
27秒前
大帅比完成签到 ,获得积分10
27秒前
12完成签到 ,获得积分10
31秒前
Polly完成签到,获得积分10
32秒前
哎健身完成签到 ,获得积分10
33秒前
33秒前
34秒前
wos完成签到,获得积分10
36秒前
小丸子完成签到,获得积分10
37秒前
dizi_88完成签到 ,获得积分10
38秒前
rjlala完成签到,获得积分20
38秒前
荔枝发布了新的文献求助50
39秒前
39秒前
ddd完成签到,获得积分10
40秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164937
求助须知:如何正确求助?哪些是违规求助? 2816026
关于积分的说明 7911173
捐赠科研通 2475663
什么是DOI,文献DOI怎么找? 1318362
科研通“疑难数据库(出版商)”最低求助积分说明 632098
版权声明 602370