A new population initialization of metaheuristic algorithms based on hybrid fuzzy rough set for high-dimensional gene data feature selection

初始化 特征选择 计算机科学 元启发式 滤波器(信号处理) 人口 人工智能 数据挖掘 特征(语言学) 算法 模糊逻辑 遗传算法 粗集 维数之咒 机器学习 模式识别(心理学) 语言学 哲学 人口学 社会学 计算机视觉 程序设计语言
作者
Xuanming Guo,Jiao Hu,Helong Yu,Mingjing Wang,Bo Yang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107538-107538 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107538
摘要

In the realm of modern medicine and biology, vast amounts of genetic data with high complexity are available. However, dealing with such high-dimensional data poses challenges due to increased processing complexity and size. Identifying critical genes to reduce data dimensionality is essential. The filter-wrapper hybrid method is a commonly used approach in feature selection. Most of these methods employ filters such as MRMR and ReliefF, but the performance of these simple filters is limited. Rough set methods, on the other hand, are a type of filter method that outperforms traditional filters. Simultaneously, many studies have pointed out the crucial importance of good initialization strategies for the performance of the metaheuristic algorithm (a type of wrapper-based method). Combining these two points, this paper proposes a novel filter-wrapper hybrid method for high-dimensional feature selection. To be specific, we utilize the variant of bWOA (binary Whale Optimization Algorithm) based on Hybrid Fuzzy Rough Set to perform attribute reduction, and the reduced attributes are used as prior knowledge to initialize the population. We then employ metaheuristics for further feature selection based on this initialized population. We conducted experiments using five different algorithms on 14 UCI datasets. The experiment results show that after applying the initialization method proposed in this article, the performance of five enhanced algorithms, has shown significant improvement. Particularly, the improved bMFO using our initialization method: fuzzy_bMFO outperformed six currently advanced algorithms, indicating that our initialization method for metaheuristic algorithms is suitable for high-dimensional feature selection tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Allen完成签到,获得积分10
1秒前
1秒前
hui发布了新的文献求助10
2秒前
简啦啦完成签到,获得积分10
2秒前
daihq3完成签到,获得积分10
2秒前
mmb完成签到,获得积分10
3秒前
睡觉的猫发布了新的文献求助10
5秒前
LSH970829完成签到,获得积分10
5秒前
小鱼完成签到 ,获得积分10
6秒前
搜集达人应助zly采纳,获得10
6秒前
简啦啦发布了新的文献求助10
6秒前
aiai完成签到 ,获得积分10
7秒前
人生如梦完成签到,获得积分10
8秒前
水深三英尺完成签到,获得积分10
9秒前
sparks完成签到,获得积分10
11秒前
11秒前
12秒前
新一完成签到 ,获得积分10
12秒前
bkagyin应助Allen采纳,获得10
13秒前
大个应助华莉变身采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
乔婉完成签到,获得积分20
15秒前
学术菜鸡123发布了新的文献求助200
16秒前
16秒前
zhanglin发布了新的文献求助10
18秒前
天才J完成签到,获得积分10
19秒前
ZOE关注了科研通微信公众号
19秒前
adam完成签到,获得积分10
20秒前
一一应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
Yu应助科研通管家采纳,获得20
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
一一应助科研通管家采纳,获得10
22秒前
一一应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
Jasper应助科研通管家采纳,获得30
22秒前
充电宝应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856886
捐赠科研通 4696312
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851