A new population initialization of metaheuristic algorithms based on hybrid fuzzy rough set for high-dimensional gene data feature selection

初始化 特征选择 计算机科学 元启发式 滤波器(信号处理) 人口 人工智能 数据挖掘 特征(语言学) 算法 模糊逻辑 遗传算法 粗集 维数之咒 机器学习 模式识别(心理学) 哲学 社会学 人口学 程序设计语言 语言学 计算机视觉
作者
Xuanming Guo,Jiao Hu,Helong Yu,Mingjing Wang,Bo Yang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107538-107538 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107538
摘要

In the realm of modern medicine and biology, vast amounts of genetic data with high complexity are available. However, dealing with such high-dimensional data poses challenges due to increased processing complexity and size. Identifying critical genes to reduce data dimensionality is essential. The filter-wrapper hybrid method is a commonly used approach in feature selection. Most of these methods employ filters such as MRMR and ReliefF, but the performance of these simple filters is limited. Rough set methods, on the other hand, are a type of filter method that outperforms traditional filters. Simultaneously, many studies have pointed out the crucial importance of good initialization strategies for the performance of the metaheuristic algorithm (a type of wrapper-based method). Combining these two points, this paper proposes a novel filter-wrapper hybrid method for high-dimensional feature selection. To be specific, we utilize the variant of bWOA (binary Whale Optimization Algorithm) based on Hybrid Fuzzy Rough Set to perform attribute reduction, and the reduced attributes are used as prior knowledge to initialize the population. We then employ metaheuristics for further feature selection based on this initialized population. We conducted experiments using five different algorithms on 14 UCI datasets. The experiment results show that after applying the initialization method proposed in this article, the performance of five enhanced algorithms, has shown significant improvement. Particularly, the improved bMFO using our initialization method: fuzzy_bMFO outperformed six currently advanced algorithms, indicating that our initialization method for metaheuristic algorithms is suitable for high-dimensional feature selection tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Much完成签到 ,获得积分10
1秒前
凡华完成签到 ,获得积分10
3秒前
奋进中的科研小菜鸟完成签到,获得积分10
4秒前
7秒前
星空完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
12秒前
巧克力完成签到 ,获得积分10
12秒前
HU完成签到,获得积分10
13秒前
垣味栗子酱完成签到,获得积分20
14秒前
胖胖玩啊玩完成签到 ,获得积分10
16秒前
Tammy完成签到,获得积分10
16秒前
阿伟完成签到,获得积分10
18秒前
无极微光应助白华苍松采纳,获得20
19秒前
酷酷的安柏完成签到 ,获得积分10
20秒前
21秒前
lovekobe完成签到 ,获得积分10
21秒前
鲁卓林完成签到,获得积分10
21秒前
甜美傲蕾完成签到,获得积分10
22秒前
22秒前
yunt完成签到 ,获得积分10
24秒前
小高完成签到 ,获得积分10
25秒前
kyros完成签到,获得积分10
26秒前
Java完成签到,获得积分10
26秒前
老实的黑米完成签到 ,获得积分10
27秒前
亲爱的桃乐茜完成签到 ,获得积分10
27秒前
WW完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
七yy完成签到 ,获得积分10
30秒前
甜蜜冷风完成签到,获得积分10
32秒前
李思超完成签到 ,获得积分10
32秒前
健壮的凝冬完成签到 ,获得积分10
33秒前
求真完成签到,获得积分10
34秒前
36秒前
浮游应助草木采纳,获得10
36秒前
白夜完成签到 ,获得积分10
36秒前
36秒前
爆米花完成签到,获得积分10
38秒前
38秒前
39秒前
40秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590