A new population initialization of metaheuristic algorithms based on hybrid fuzzy rough set for high-dimensional gene data feature selection

初始化 特征选择 计算机科学 元启发式 滤波器(信号处理) 人口 人工智能 数据挖掘 特征(语言学) 算法 模糊逻辑 遗传算法 粗集 维数之咒 机器学习 模式识别(心理学) 哲学 社会学 人口学 程序设计语言 语言学 计算机视觉
作者
Xuanming Guo,Jiao Hu,Helong Yu,Mingjing Wang,Bo Yang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107538-107538 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107538
摘要

In the realm of modern medicine and biology, vast amounts of genetic data with high complexity are available. However, dealing with such high-dimensional data poses challenges due to increased processing complexity and size. Identifying critical genes to reduce data dimensionality is essential. The filter-wrapper hybrid method is a commonly used approach in feature selection. Most of these methods employ filters such as MRMR and ReliefF, but the performance of these simple filters is limited. Rough set methods, on the other hand, are a type of filter method that outperforms traditional filters. Simultaneously, many studies have pointed out the crucial importance of good initialization strategies for the performance of the metaheuristic algorithm (a type of wrapper-based method). Combining these two points, this paper proposes a novel filter-wrapper hybrid method for high-dimensional feature selection. To be specific, we utilize the variant of bWOA (binary Whale Optimization Algorithm) based on Hybrid Fuzzy Rough Set to perform attribute reduction, and the reduced attributes are used as prior knowledge to initialize the population. We then employ metaheuristics for further feature selection based on this initialized population. We conducted experiments using five different algorithms on 14 UCI datasets. The experiment results show that after applying the initialization method proposed in this article, the performance of five enhanced algorithms, has shown significant improvement. Particularly, the improved bMFO using our initialization method: fuzzy_bMFO outperformed six currently advanced algorithms, indicating that our initialization method for metaheuristic algorithms is suitable for high-dimensional feature selection tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_n0DWDn完成签到,获得积分10
刚刚
Akim应助惜海采纳,获得10
刚刚
3秒前
彭于晏应助DONG采纳,获得10
4秒前
科研通AI6应助西地兰卡采纳,获得10
4秒前
aa发布了新的文献求助10
5秒前
跳跃的凌文完成签到 ,获得积分10
5秒前
在水一方应助邱海华采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
科研通AI6应助ljh采纳,获得10
7秒前
科研通AI6应助鲸与海采纳,获得10
7秒前
轻松的雨竹完成签到,获得积分10
7秒前
bji发布了新的文献求助10
7秒前
JamesPei应助happy采纳,获得10
8秒前
9秒前
9秒前
我是老大应助Dr.feng采纳,获得30
9秒前
Abyxwz完成签到,获得积分10
9秒前
9秒前
今后应助qcpassed采纳,获得30
10秒前
Bo关闭了Bo文献求助
10秒前
jl发布了新的文献求助10
10秒前
1111应助Tracyyu采纳,获得10
11秒前
12秒前
Ava应助aa采纳,获得10
12秒前
scxl2000完成签到 ,获得积分10
12秒前
正电荷完成签到 ,获得积分10
13秒前
13秒前
西贝示贞发布了新的文献求助10
13秒前
zwzh发布了新的文献求助10
14秒前
星辰大海应助huang采纳,获得10
14秒前
14秒前
15秒前
rain完成签到,获得积分10
16秒前
16秒前
Ava应助香橙脆脆条采纳,获得10
16秒前
北木南关注了科研通微信公众号
17秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583543
求助须知:如何正确求助?哪些是违规求助? 4667349
关于积分的说明 14766810
捐赠科研通 4609554
什么是DOI,文献DOI怎么找? 2529305
邀请新用户注册赠送积分活动 1498473
关于科研通互助平台的介绍 1467119