生物多样性
声景
热带森林
跟踪(教育)
农林复合经营
热带气候
生态学
计算机科学
地理
环境科学
生物
地质学
声音(地理)
海洋学
心理学
教育学
作者
Jörg Müller,Oliver Mitesser,H. Martin Schaefer,Sebastian Seibold,Annika Busse,Peter Kriegel,Dominik Rabl,Rudy Gelis,Alejandro Arteaga,Juan F. Freile,Gabriel Augusto Leite,Tomaz Nascimento de Melo,Jack LeBien,Marconi Campos‐Cerqueira,Nico Blüthgen,Constance J. Tremlett,Dennis Böttger,Heike Feldhaar,Nina Grella,Ana Falconí‐López,David A. Donoso,Jérôme Morinière,Zuzana Buřivalová
标识
DOI:10.1038/s41467-023-41693-w
摘要
Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in Ecuador. We show that the community composition, and not species richness, of vocalizing vertebrates identified by experts reflects the restoration gradient. Two automated measures - an acoustic index model and a bird community composition derived from an independently developed Convolutional Neural Network - correlated well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both measures reflected composition of non-vocalizing nocturnal insects identified via metabarcoding. We show that such automated monitoring tools, based on new technologies, can effectively monitor the success of forest recovery, using robust and reproducible data.
科研通智能强力驱动
Strongly Powered by AbleSci AI