Identifying drug interactions using machine learning

药物数据库 机器学习 人工智能 计算机科学 药品 逻辑回归 梯度升压 人口 医学 生物信息学 药理学 生物 随机森林 环境卫生
作者
Idris Demirsoy,Adnan Karaibrahimoğlu
出处
期刊:Advances in Clinical and Experimental Medicine [Wroclaw Medical University]
卷期号:32 (8): 829-838 被引量:2
标识
DOI:10.17219/acem/169852
摘要

The majority of Americans, accounting for 51% of the population, take 2 or more drugs daily. Unfortunately, nearly 100,000 people die annually as a result of adverse drug reactions (ADRs), making it the 4th most common cause of mortality in the USA. Drug-drug interactions (DDls) and their impact on patients represent critical challenges for the healthcare system. To reduce the incidence of ADRs, this study focuses on identifying DDls using a machine-learning approach. Drug-related information was obtained from various free databases, including DrugBank, BioGRID and Comparative Toxicogenomics Database. Eight similarity matrices between drugs were created as covariates in the model in order to assess their infiuence on DDls. Three distinct machine learning algorithms were considered, namely, logistic regression (LR), extreme Gradient Boosting (XGBoost) and neural network (NN). Our study examined 22 notable drugs and their interactions with 841 other drugs from DrugBank. The accuracy of the machine learning approaches ranged from 68% to 78%, while the F1 scores ranged from 78% to 83%. Our study indicates that enzyme and target similarity are the most significant parameters in identifying DDls. Finally, our data-driven approach reveals that machine learning methods can accurately predict DDls and provide additional insights in a timely and cost-effective manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
领导范儿应助yxy采纳,获得10
2秒前
桐桐应助渡尘采纳,获得10
2秒前
3秒前
你吼发布了新的文献求助10
3秒前
1111完成签到,获得积分10
4秒前
向峻熙发布了新的文献求助10
4秒前
5秒前
CyrusSo524应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
6秒前
Sweet发布了新的文献求助10
6秒前
李健应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Liufgui应助科研通管家采纳,获得20
6秒前
6秒前
孙福禄应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
wy发布了新的文献求助10
6秒前
7907发布了新的文献求助10
7秒前
科研达人发布了新的文献求助10
7秒前
7秒前
8秒前
CAOHOU应助快乐的鱼采纳,获得10
9秒前
cc完成签到 ,获得积分10
10秒前
周凡淇发布了新的文献求助10
10秒前
11秒前
11秒前
我是老大应助勤恳的珊采纳,获得10
12秒前
今后应助柠m采纳,获得10
12秒前
14秒前
honey发布了新的文献求助10
15秒前
汉堡包应助wy采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070