A precision-centric approach to overcoming data imbalance and non-IIDness in federated learning

计算机科学 代表性启发 联合学习 班级(哲学) 过程(计算) 集合(抽象数据类型) 分布式计算 机器学习 趋同(经济学) 人工智能 数据挖掘 经济增长 社会心理学 操作系统 经济 程序设计语言 心理学
作者
Anam Nawaz Khan,Atif Rizwan,Rashid Ahmad,Qazi Waqas Khan,Sunhwan Lim,Do‐Hyeun Kim
出处
期刊:Internet of things [Elsevier BV]
卷期号:23: 100890-100890 被引量:4
标识
DOI:10.1016/j.iot.2023.100890
摘要

Federated learning enables decentralized model training, but the distribution of data across devices presents significant challenges to global model convergence. Existing approaches risk losing the representativeness of local models after model aggregation, calling for a more efficient and robust solution. In this study, we address the model aggregation challenge in federated learning by focusing on improving the performance of global model with class imbalance and non-independent and identically distributed data. We aim to train a global model collaboratively that represents all participating nodes, promoting fairness and ensuring adequate representation of all classes in the model. We propose redistributing local model weights based on their precision-based contributions to each class to enhance the performance and communication efficiency of federated thermal comfort prediction. Our proposed method can assist in allocating more resources and attention to nodes with high precision for underrepresented classes, thereby improving the global model overall performance and fairness. Furthermore, our framework leverages the virtualization capability of digital twins to enable dynamic registration and participation of nodes in the federated learning process in real-time. The developed DT framework enables real-time monitoring and control of the decentralized training. Through evaluation on a real data-set, we demonstrate significant improvements in accuracy and communication efficiency compared to existing methods. Our evaluation shows that the proposed Class Precision-Weighted Aggregation technique Fed-CPWA outperforms Federated Averaging, with higher accuracy of 82.85% and lower communication costs by 31.64%. Our contribution provides a valuable step towards sustainable thermal comfort modeling and furthers the development of fair and robust federated learning techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜叫兽完成签到,获得积分10
1秒前
Aventen发布了新的文献求助10
1秒前
SciGPT应助猪猪侠采纳,获得10
3秒前
blingl发布了新的文献求助30
3秒前
简单火龙果完成签到,获得积分10
3秒前
kuoping完成签到,获得积分0
3秒前
Okayoooooo发布了新的文献求助10
4秒前
5秒前
木樨完成签到,获得积分10
9秒前
善良的火完成签到 ,获得积分10
9秒前
Palpitate发布了新的文献求助10
9秒前
星辰大海应助香菜芋头采纳,获得10
9秒前
shinn发布了新的文献求助10
10秒前
Xiaoxiao应助敏感雅香采纳,获得10
10秒前
高贵伟诚关注了科研通微信公众号
10秒前
跑山猪完成签到,获得积分10
11秒前
KobeLaoda完成签到,获得积分20
11秒前
jawa完成签到 ,获得积分10
11秒前
完美世界应助无辜叫兽采纳,获得10
11秒前
11秒前
12秒前
科研通AI5应助DDD采纳,获得10
12秒前
13秒前
Panther完成签到,获得积分10
15秒前
fjnm完成签到,获得积分10
15秒前
U9A发布了新的文献求助10
18秒前
清脆大树发布了新的文献求助30
18秒前
21秒前
22秒前
24秒前
yiw发布了新的文献求助10
26秒前
Lucas应助花生YZ采纳,获得10
26秒前
传奇3应助武雨寒采纳,获得10
27秒前
27秒前
Yu关闭了Yu文献求助
28秒前
DDD发布了新的文献求助10
29秒前
30秒前
马琛尧发布了新的文献求助10
30秒前
田様应助辛勤的听枫采纳,获得10
30秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967482
求助须知:如何正确求助?哪些是违规求助? 3512759
关于积分的说明 11164944
捐赠科研通 3247740
什么是DOI,文献DOI怎么找? 1794021
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517