A precision-centric approach to overcoming data imbalance and non-IIDness in federated learning

计算机科学 代表性启发 联合学习 班级(哲学) 过程(计算) 集合(抽象数据类型) 分布式计算 机器学习 趋同(经济学) 人工智能 数据挖掘 心理学 社会心理学 经济 程序设计语言 经济增长 操作系统
作者
Anam Nawaz Khan,Atif Rizwan,Rashid Ahmad,Qazi Waqas Khan,Sunhwan Lim,Do‐Hyeun Kim
出处
期刊:Internet of things [Elsevier]
卷期号:23: 100890-100890 被引量:4
标识
DOI:10.1016/j.iot.2023.100890
摘要

Federated learning enables decentralized model training, but the distribution of data across devices presents significant challenges to global model convergence. Existing approaches risk losing the representativeness of local models after model aggregation, calling for a more efficient and robust solution. In this study, we address the model aggregation challenge in federated learning by focusing on improving the performance of global model with class imbalance and non-independent and identically distributed data. We aim to train a global model collaboratively that represents all participating nodes, promoting fairness and ensuring adequate representation of all classes in the model. We propose redistributing local model weights based on their precision-based contributions to each class to enhance the performance and communication efficiency of federated thermal comfort prediction. Our proposed method can assist in allocating more resources and attention to nodes with high precision for underrepresented classes, thereby improving the global model overall performance and fairness. Furthermore, our framework leverages the virtualization capability of digital twins to enable dynamic registration and participation of nodes in the federated learning process in real-time. The developed DT framework enables real-time monitoring and control of the decentralized training. Through evaluation on a real data-set, we demonstrate significant improvements in accuracy and communication efficiency compared to existing methods. Our evaluation shows that the proposed Class Precision-Weighted Aggregation technique Fed-CPWA outperforms Federated Averaging, with higher accuracy of 82.85% and lower communication costs by 31.64%. Our contribution provides a valuable step towards sustainable thermal comfort modeling and furthers the development of fair and robust federated learning techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负责钢铁侠完成签到,获得积分20
刚刚
汶溢完成签到,获得积分10
1秒前
旺仔儿童成长牛奶完成签到,获得积分10
3秒前
流星雨完成签到,获得积分10
3秒前
6秒前
顾矜应助Sun采纳,获得10
6秒前
李爱国应助负责钢铁侠采纳,获得10
6秒前
大花卷完成签到,获得积分10
7秒前
7秒前
桐桐应助momo采纳,获得10
8秒前
8秒前
10秒前
研友_LjbjzL完成签到,获得积分10
10秒前
11秒前
星辰大海应助青尘枫叶采纳,获得10
12秒前
12秒前
12秒前
唐新惠完成签到 ,获得积分10
13秒前
小易完成签到,获得积分10
14秒前
英姑应助叶子采纳,获得10
14秒前
FCL完成签到,获得积分10
15秒前
醉熏的天薇完成签到,获得积分10
15秒前
yuhuzhouye发布了新的文献求助10
16秒前
Sun发布了新的文献求助10
16秒前
可可完成签到 ,获得积分10
17秒前
zhao发布了新的文献求助10
17秒前
xbo完成签到,获得积分10
18秒前
19秒前
烟花应助rxx采纳,获得10
20秒前
zouxlin3完成签到,获得积分10
20秒前
葡萄成熟发布了新的文献求助10
20秒前
yuhuzhouye完成签到,获得积分10
21秒前
momo发布了新的文献求助10
25秒前
huohuo143完成签到,获得积分10
25秒前
26秒前
科研通AI2S应助哈哈哈采纳,获得10
27秒前
wangjing完成签到,获得积分10
27秒前
易安完成签到,获得积分10
27秒前
hxb应助ly采纳,获得10
27秒前
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163395
求助须知:如何正确求助?哪些是违规求助? 2814263
关于积分的说明 7904141
捐赠科研通 2473792
什么是DOI,文献DOI怎么找? 1317118
科研通“疑难数据库(出版商)”最低求助积分说明 631625
版权声明 602187