A precision-centric approach to overcoming data imbalance and non-IIDness in federated learning

计算机科学 代表性启发 联合学习 班级(哲学) 过程(计算) 集合(抽象数据类型) 分布式计算 机器学习 趋同(经济学) 人工智能 数据挖掘 经济增长 社会心理学 操作系统 经济 程序设计语言 心理学
作者
Anam Nawaz Khan,Atif Rizwan,Rashid Ahmad,Qazi Waqas Khan,Sunhwan Lim,Do‐Hyeun Kim
出处
期刊:Internet of things [Elsevier BV]
卷期号:23: 100890-100890 被引量:4
标识
DOI:10.1016/j.iot.2023.100890
摘要

Federated learning enables decentralized model training, but the distribution of data across devices presents significant challenges to global model convergence. Existing approaches risk losing the representativeness of local models after model aggregation, calling for a more efficient and robust solution. In this study, we address the model aggregation challenge in federated learning by focusing on improving the performance of global model with class imbalance and non-independent and identically distributed data. We aim to train a global model collaboratively that represents all participating nodes, promoting fairness and ensuring adequate representation of all classes in the model. We propose redistributing local model weights based on their precision-based contributions to each class to enhance the performance and communication efficiency of federated thermal comfort prediction. Our proposed method can assist in allocating more resources and attention to nodes with high precision for underrepresented classes, thereby improving the global model overall performance and fairness. Furthermore, our framework leverages the virtualization capability of digital twins to enable dynamic registration and participation of nodes in the federated learning process in real-time. The developed DT framework enables real-time monitoring and control of the decentralized training. Through evaluation on a real data-set, we demonstrate significant improvements in accuracy and communication efficiency compared to existing methods. Our evaluation shows that the proposed Class Precision-Weighted Aggregation technique Fed-CPWA outperforms Federated Averaging, with higher accuracy of 82.85% and lower communication costs by 31.64%. Our contribution provides a valuable step towards sustainable thermal comfort modeling and furthers the development of fair and robust federated learning techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助感动苡采纳,获得10
2秒前
雪山大地完成签到,获得积分10
2秒前
Beton_X发布了新的文献求助40
3秒前
4秒前
4秒前
嘿嘿嘿发布了新的文献求助10
4秒前
4秒前
5秒前
小肥鑫发布了新的文献求助10
6秒前
7秒前
scoot完成签到 ,获得积分10
7秒前
wjx关闭了wjx文献求助
7秒前
7秒前
蛋挞完成签到,获得积分20
7秒前
hhh完成签到 ,获得积分10
9秒前
爱学习发布了新的文献求助10
9秒前
张张发布了新的文献求助10
9秒前
wangsai0532完成签到,获得积分10
10秒前
10秒前
SciGPT应助1111111111111111采纳,获得10
10秒前
10秒前
Aaron完成签到 ,获得积分10
11秒前
xx完成签到,获得积分10
11秒前
嘿嘿嘿发布了新的文献求助10
11秒前
晗晗发布了新的文献求助10
12秒前
12秒前
研友_VZG7GZ应助小肥鑫采纳,获得10
12秒前
万能图书馆应助Joey采纳,获得10
14秒前
14秒前
15秒前
香蕉觅云应助EmmaLin采纳,获得10
15秒前
15秒前
77发布了新的文献求助10
16秒前
17秒前
FashionBoy应助泠漓采纳,获得10
17秒前
17秒前
17秒前
于大强完成签到,获得积分10
18秒前
共享精神应助晗晗采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676