Non-iterative scribble-supervised learning with pacing pseudo-masks for medical image segmentation

计算机科学 分割 人工智能 正规化(语言学) 像素 一致性(知识库) 算法 掷骰子 模式识别(心理学) 数学 统计
作者
Zefan Yang,Di Lin,Dong Ni,Yi Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122024-122024
标识
DOI:10.1016/j.eswa.2023.122024
摘要

Scribble-supervised medical image segmentation tackles the limitation of sparse masks. Conventional approaches alternate between: labeling pseudo-masks and optimizing network parameters. However, such iterative two-stage paradigm is unwieldy and could be trapped in poor local optima since the networks undesirably regress to the erroneous pseudo-masks. To address these issues, we propose a non-iterative method where a stream of varying (pacing) pseudo-masks teach a network via consistency training, named PacingPseudo. Our contributions are summarized as follows. First, we design a non-iterative process. This process is achieved gracefully by a siamese architecture that comparises two weight-sharing networks. The siamese architecture naturally allows a stream of pseudo-masks to assimilate a stream of predicted-masks during training. Second, we make the consistency training effective with two necessary designs: (i) entropy regularization to obtain high-confidence pseudo-masks for effective teaching; and (ii) distorted augmentations to create discrepancy between the pseudo-mask and predicted-mask streams for consistency regularization. Third, we devise a new memory bank mechanism that provides an extra source of ensemble features to complement scarce labeled pixels. We evaluate the proposed PacingPseudo on public abdominal organ, cardiac structure, and myocardium datasets, named CHAOS T1&T2, ACDC, and LVSC. Evaluation metrics include the Dice similarity coefficient (DSC) and the 95-th percentile of Hausdorff distance (HD95). Experimental results show that PacingPseudo achieves a 68.0% DSC and 14.1 mm HD95 on CHAOS T1, 73.7% DSC and 12.2 mm HD95 on CHAOS T2, 82.9% DSC and 4.3 mm HD95 on ACDC, and 61.4% DSC and 11.9 mm HD95 on LVSC. These results improve the baseline method by ≥3.1% in DSC and ≥14.2 mm in HD95. These results also outcompete previous methods. The fully-supervised method attains a 67.0% DSC and 16.7 mm HD95 on CHAOS T1, 71.2% DSC and 12.6 mm HD95 on CHAOS T2, 84.0% DSC and 3.9 mm HD95 on ACDC, and 72.9% DSC and 7.6 mm HD95 on LVSC. PacingPseudo’s performance is comparable to the fully-supervised method on CHAOS T1&T2 and ACDC. Overall, the above results demonstrate the feasibility of PacingPseudo for the challenging scribble-supervised segmentation tasks. The source code is publicly available athttps://github.com/zefanyang/pacingpseudo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tgd完成签到,获得积分10
刚刚
刚刚
xiuxiu_27发布了新的文献求助10
刚刚
科研通AI5应助zzznznnn采纳,获得10
刚刚
lidm完成签到,获得积分10
刚刚
小赟完成签到,获得积分10
1秒前
1秒前
yyf发布了新的文献求助10
1秒前
南佳完成签到,获得积分20
2秒前
2秒前
一一完成签到,获得积分10
2秒前
2秒前
3秒前
韭菜盒子发布了新的文献求助10
3秒前
3秒前
3秒前
Cochane发布了新的文献求助10
4秒前
monday完成签到,获得积分10
4秒前
sunnyhhh完成签到,获得积分10
4秒前
aaa完成签到,获得积分10
4秒前
4秒前
4秒前
勿庸发布了新的文献求助10
5秒前
犹豫的忆梅完成签到,获得积分10
5秒前
5秒前
周助完成签到,获得积分10
5秒前
jack1511完成签到,获得积分20
5秒前
敏感初露完成签到,获得积分10
6秒前
冯冯完成签到 ,获得积分10
6秒前
科研通AI5应助落寞的紫山采纳,获得10
6秒前
gaos发布了新的文献求助10
6秒前
嘻嘻完成签到,获得积分10
6秒前
脑洞疼应助哈哈采纳,获得10
6秒前
Yfvonne完成签到,获得积分10
7秒前
蕾蕾不爱科研完成签到,获得积分10
7秒前
苹果南烟完成签到,获得积分10
7秒前
7秒前
可靠的书本完成签到,获得积分10
7秒前
7秒前
thousandlong发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740