亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CIT: Content-invariant translation with hybrid attention mechanism for unsupervised change detection

计算机科学 变更检测 人工智能 事件(粒子物理) 翻译(生物学) 相似性(几何) 无监督学习 机器学习 模式识别(心理学) 图像(数学) 生物化学 量子力学 基因 信使核糖核酸 物理 化学
作者
Bo Fang,Gang Chen,Rong Kou,Mercedes E. Paoletti,Juan M. Haut,Antonio Plaza
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:204: 321-339 被引量:6
标识
DOI:10.1016/j.isprsjprs.2023.09.012
摘要

In remote sensing, change detection has always been a fundamental yet challenging research topic, with profound theoretical significance and extensive application value. Over the past decades, the emergence and development of deep learning has provided new technical supports for supervised change detection and advanced its accuracy to unprecedented levels. Nevertheless, owing to the strong reliance and weak transferability of pre-labeled references, supervised learning modes still require some degrees of human assistance, which is not applicable to all the change detection tasks. In addition, agnostic to any specific inherent property, changes may display inconstant and irregular characteristics when occurring between different land cover categories, making them incompatible with traditional end-to-end learning formats. In this research, we investigate the utilization of unsupervised deep learning mode, and develop a novel approach, namely content-invariant translation (CIT), for unsupervised change detection in bi-temporal remotely sensed images. In this method, a new framework integrating the adversarial learning algorithm and hybrid attention mechanism is designed to learn a one-sided cross-domain translation from the pre-event domain to the post-event one. During this process, a self-attention module focuses on small-scale image patches and ensures the content consistency of each pair of pre-event and translated patches, and meanwhile, a cross-domain module focuses on large-scale images and guarantees the style similarity of two groups of translated and post-event patches. After translation, the style discrepancies in bi-temporal images are suppressed while the real content changes are highlighted. Extensive experiments conducted on three typical datasets that with diverse types of changes verify the effectiveness and competitiveness of our newly proposed CIT by a large margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助阿尼亚采纳,获得10
刚刚
如沐春风发布了新的文献求助10
7秒前
HNNUYanY发布了新的文献求助10
10秒前
11秒前
HNNUYanY完成签到,获得积分10
35秒前
37秒前
凡人丿完成签到,获得积分10
38秒前
SciGPT应助Aaaaaa瘾采纳,获得10
51秒前
51秒前
53秒前
雪白智宸完成签到 ,获得积分10
1分钟前
思源应助lbjcp3采纳,获得10
1分钟前
吕半鬼完成签到,获得积分10
1分钟前
故意的问安完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
lbjcp3发布了新的文献求助10
1分钟前
壮观的抽屉完成签到,获得积分10
1分钟前
迅速的蜡烛完成签到 ,获得积分10
1分钟前
1分钟前
janie发布了新的文献求助50
1分钟前
1分钟前
zhangxr发布了新的文献求助10
1分钟前
2分钟前
2分钟前
dww完成签到,获得积分10
2分钟前
xueying6767发布了新的文献求助10
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
jason完成签到,获得积分0
2分钟前
orixero应助爱听歌笑寒采纳,获得10
3分钟前
3分钟前
3分钟前
Aaaaaa瘾发布了新的文献求助10
3分钟前
3分钟前
怡然的友容完成签到 ,获得积分10
3分钟前
朱朱子完成签到 ,获得积分10
3分钟前
科研通AI2S应助晏紫苏采纳,获得10
3分钟前
3分钟前
阿尼亚发布了新的文献求助10
3分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139548
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795255
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146