已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

High-content microscopy reveals a morphological signature of bortezomib resistance

硼替佐米 蛋白酶体抑制剂 抗药性 生物 癌细胞 高含量筛选 蛋白酶体 细胞培养 癌症研究 细胞 癌症 细胞生物学 免疫学 多发性骨髓瘤 遗传学
作者
Megan E. Kelley,Adi Y. Berman,David R. Stirling,Beth A. Cimini,Yu Han,Shantanu Singh,Anne E. Carpenter,Tarun M. Kapoor,Gregory P. Way
出处
期刊:eLife [eLife Sciences Publications, Ltd.]
卷期号:12
标识
DOI:10.7554/elife.91362
摘要

Drug resistance is a challenge in anticancer therapy. In many cases, cancers can be resistant to the drug prior to exposure, i.e., possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug resistance. To test this hypothesis, we used HCT116 cells, a mismatch repair-deficient cancer cell line, to isolate clones that were resistant or sensitive to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then expanded these clones and measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features that differed between resistant and sensitive cells. We used these features to generate a morphological signature of bortezomib resistance. We then employed this morphological signature to analyze a set of HCT116 clones (five resistant and five sensitive) that had not been included in the signature training dataset, and correctly predicted sensitivity to bortezomib in seven cases, in the absence of drug treatment. This signature predicted bortezomib resistance better than resistance to other drugs targeting the ubiquitin-proteasome system. Our results establish a proof-of-concept framework for the unbiased analysis of drug resistance using high-content microscopy of cancer cells, in the absence of drug treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小蘑菇应助负责新筠采纳,获得10
4秒前
香蕉觅云应助luxiaoyu采纳,获得10
5秒前
xg完成签到,获得积分20
6秒前
Enoch发布了新的文献求助10
8秒前
9秒前
10秒前
大方从彤完成签到,获得积分10
10秒前
顾矜应助version采纳,获得10
11秒前
浮生发布了新的文献求助10
12秒前
mini发布了新的文献求助10
13秒前
建新发布了新的文献求助10
14秒前
xg发布了新的文献求助30
15秒前
平淡小丸子完成签到 ,获得积分10
16秒前
90yied发布了新的文献求助10
16秒前
17秒前
zhangyt完成签到 ,获得积分10
18秒前
18秒前
健忘的白云完成签到,获得积分10
22秒前
luxiaoyu发布了新的文献求助10
22秒前
科研通AI5应助砚冰采纳,获得30
22秒前
23秒前
香蕉茹妖发布了新的文献求助10
23秒前
浮生发布了新的文献求助30
25秒前
sure发布了新的文献求助10
28秒前
情怀应助Bright24采纳,获得10
29秒前
科研通AI5应助summer采纳,获得10
31秒前
Ava应助90yied采纳,获得10
31秒前
老阳发布了新的文献求助20
32秒前
科研通AI5应助lalalatiancai采纳,获得10
32秒前
32秒前
34秒前
tester_gater完成签到 ,获得积分10
34秒前
36秒前
livialiu发布了新的文献求助10
36秒前
科研通AI5应助fei菲飞采纳,获得10
36秒前
37秒前
37秒前
38秒前
北偶完成签到 ,获得积分10
39秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477191
求助须知:如何正确求助?哪些是违规求助? 3068711
关于积分的说明 9109134
捐赠科研通 2760134
什么是DOI,文献DOI怎么找? 1514673
邀请新用户注册赠送积分活动 700422
科研通“疑难数据库(出版商)”最低求助积分说明 699487