High-content microscopy reveals a morphological signature of bortezomib resistance

硼替佐米 蛋白酶体抑制剂 抗药性 生物 癌细胞 高含量筛选 蛋白酶体 细胞培养 癌症研究 细胞 癌症 细胞生物学 免疫学 多发性骨髓瘤 遗传学
作者
Megan E. Kelley,Adi Y. Berman,David R. Stirling,Beth A. Cimini,Yu Han,Shantanu Singh,Anne E. Carpenter,Tarun M. Kapoor,Gregory P. Way
出处
期刊:eLife [eLife Sciences Publications Ltd]
卷期号:12
标识
DOI:10.7554/elife.91362
摘要

Drug resistance is a challenge in anticancer therapy. In many cases, cancers can be resistant to the drug prior to exposure, i.e., possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug resistance. To test this hypothesis, we used HCT116 cells, a mismatch repair-deficient cancer cell line, to isolate clones that were resistant or sensitive to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then expanded these clones and measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features that differed between resistant and sensitive cells. We used these features to generate a morphological signature of bortezomib resistance. We then employed this morphological signature to analyze a set of HCT116 clones (five resistant and five sensitive) that had not been included in the signature training dataset, and correctly predicted sensitivity to bortezomib in seven cases, in the absence of drug treatment. This signature predicted bortezomib resistance better than resistance to other drugs targeting the ubiquitin-proteasome system. Our results establish a proof-of-concept framework for the unbiased analysis of drug resistance using high-content microscopy of cancer cells, in the absence of drug treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐疯样完成签到,获得积分10
1秒前
xixi完成签到,获得积分10
1秒前
慕青应助影子采纳,获得10
2秒前
3秒前
生椰拿铁发布了新的文献求助20
4秒前
肉肉发布了新的文献求助10
5秒前
8秒前
YCG完成签到 ,获得积分10
8秒前
玖玖柒idol发布了新的文献求助10
11秒前
caicai完成签到 ,获得积分10
14秒前
充电宝应助pirongshi采纳,获得10
14秒前
15秒前
Chem34完成签到,获得积分10
16秒前
爱吃土豆的马铃薯完成签到,获得积分10
18秒前
黄启烽发布了新的文献求助20
19秒前
yang完成签到,获得积分10
19秒前
20秒前
左丘幼旋1发布了新的文献求助10
21秒前
Zhukic发布了新的文献求助10
21秒前
22秒前
22秒前
善学以致用应助wangmeiqiong采纳,获得10
22秒前
乐观思真完成签到,获得积分10
22秒前
24秒前
25秒前
xialuoke发布了新的文献求助10
26秒前
归尘发布了新的文献求助10
28秒前
28秒前
车宇完成签到 ,获得积分10
29秒前
31秒前
张光光发布了新的文献求助10
31秒前
肉肉发布了新的文献求助10
31秒前
xialuoke完成签到,获得积分10
32秒前
陈秋发布了新的文献求助10
33秒前
34秒前
34秒前
NEKO完成签到,获得积分10
35秒前
可可完成签到 ,获得积分10
35秒前
灵寒发布了新的文献求助10
37秒前
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962822
求助须知:如何正确求助?哪些是违规求助? 3508736
关于积分的说明 11142697
捐赠科研通 3241520
什么是DOI,文献DOI怎么找? 1791604
邀请新用户注册赠送积分活动 872987
科研通“疑难数据库(出版商)”最低求助积分说明 803517