亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A molecular networking-assisted automatic database screening strategy for comprehensive annotation of small molecules in complex matrices

化学 注释 Python(编程语言) 数据库 计算机科学 数据挖掘 人工智能 操作系统
作者
Xinlu Li,Zi-Fan Guo,Xiaodong Wen,Meng-Ning Li,Hua Yang
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1710: 464417-464417
标识
DOI:10.1016/j.chroma.2023.464417
摘要

Liquid chromatography-tandem with high-resolution mass spectrometry (LCHRMS) has proven challenging for annotating multiple small molecules within complex matrices due to the complexities of chemical structure and raw LCHRMS data, as well as limitations in previous literatures and reference spectra related to those molecules. In this study, we developed a molecular networking assisted automatic database screening (MN/auto-DBS) strategy to examine the combined effect of MS1 exact mass screening and MS2 similarity analysis. We compiled all previously reported compounds from the relevant literatures. With the development of a Python software, the in-house database (DB) was created by automatically calculating the m/z and data from experimental MS1 hits were rapid screened with DB. We then performed a feature-based molecular network analysis on the auto-MS2 data for supplementary identification of unreported compounds, including clustered FBMN and annotated GNPS compounds. Finally, the results from both strategies were merged and manually curated for correct structural assignment. To demonstrate the applicability of MN/auto-DBS, we selected the Huangqi-Danshen herb pair (HD), commonly used in prescriptions or patent medicines to treat diabetic nephropathy and cerebrovascular disease. A total of 223 compounds were annotated, including 65 molecules not previously reported in HD, such as aromatic polyketides, coumarins, and diarylheptanoids. Using MN/auto-DBS, we can profile and mine a wide range of complex matrices for potentially new compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
康康完成签到 ,获得积分10
6秒前
WX完成签到 ,获得积分10
21秒前
dream177777完成签到 ,获得积分10
23秒前
自信号厂完成签到 ,获得积分0
25秒前
39秒前
39秒前
Cmqq发布了新的文献求助10
43秒前
roe完成签到 ,获得积分10
46秒前
池雨完成签到 ,获得积分10
52秒前
黄宗泽完成签到 ,获得积分10
52秒前
57秒前
科研通AI6应助guan采纳,获得30
58秒前
BowieHuang应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得30
1分钟前
ceeray23应助科研通管家采纳,获得30
1分钟前
烟花应助Cmqq采纳,获得10
1分钟前
严伟完成签到 ,获得积分10
1分钟前
1分钟前
你好你好完成签到 ,获得积分10
1分钟前
1分钟前
肥牛完成签到,获得积分10
1分钟前
Cmqq发布了新的文献求助10
1分钟前
1分钟前
努力成为大佬完成签到,获得积分10
2分钟前
2分钟前
2分钟前
桐桐应助Cmqq采纳,获得10
2分钟前
空城发布了新的文献求助10
2分钟前
科研通AI2S应助空城采纳,获得10
2分钟前
暴走小面包完成签到 ,获得积分10
2分钟前
科研通AI6应助昵称已挥发采纳,获得10
2分钟前
2分钟前
机灵自中完成签到,获得积分10
2分钟前
2分钟前
大胆面包完成签到,获得积分10
2分钟前
xixiazhiwang完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685483
关于积分的说明 14838528
捐赠科研通 4670394
什么是DOI,文献DOI怎么找? 2538191
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904