A molecular networking-assisted automatic database screening strategy for comprehensive annotation of small molecules in complex matrices

化学 注释 Python(编程语言) 数据库 计算机科学 数据挖掘 人工智能 操作系统
作者
Xinlu Li,Zi-Fan Guo,Xiaodong Wen,Meng-Ning Li,Hua Yang
出处
期刊:Journal of Chromatography A [Elsevier BV]
卷期号:1710: 464417-464417
标识
DOI:10.1016/j.chroma.2023.464417
摘要

Liquid chromatography-tandem with high-resolution mass spectrometry (LCHRMS) has proven challenging for annotating multiple small molecules within complex matrices due to the complexities of chemical structure and raw LCHRMS data, as well as limitations in previous literatures and reference spectra related to those molecules. In this study, we developed a molecular networking assisted automatic database screening (MN/auto-DBS) strategy to examine the combined effect of MS1 exact mass screening and MS2 similarity analysis. We compiled all previously reported compounds from the relevant literatures. With the development of a Python software, the in-house database (DB) was created by automatically calculating the m/z and data from experimental MS1 hits were rapid screened with DB. We then performed a feature-based molecular network analysis on the auto-MS2 data for supplementary identification of unreported compounds, including clustered FBMN and annotated GNPS compounds. Finally, the results from both strategies were merged and manually curated for correct structural assignment. To demonstrate the applicability of MN/auto-DBS, we selected the Huangqi-Danshen herb pair (HD), commonly used in prescriptions or patent medicines to treat diabetic nephropathy and cerebrovascular disease. A total of 223 compounds were annotated, including 65 molecules not previously reported in HD, such as aromatic polyketides, coumarins, and diarylheptanoids. Using MN/auto-DBS, we can profile and mine a wide range of complex matrices for potentially new compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
图苏完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
浮游应助秃头小宝贝采纳,获得10
3秒前
123发布了新的文献求助10
3秒前
文右三发布了新的文献求助10
3秒前
望星空完成签到,获得积分10
3秒前
4秒前
共享精神应助森森采纳,获得10
4秒前
yao完成签到,获得积分10
4秒前
5秒前
6秒前
没有昵称完成签到 ,获得积分10
6秒前
7秒前
嘤嘤怪发布了新的文献求助10
7秒前
科研通AI5应助cc采纳,获得10
7秒前
8秒前
朱厚璁发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
星辰大海应助艺术家采纳,获得10
12秒前
大模型应助科研小黑采纳,获得10
13秒前
13秒前
英吉利25发布了新的文献求助10
14秒前
是苗苗丫完成签到,获得积分10
14秒前
15秒前
15秒前
今夜小楼一曲完成签到,获得积分10
15秒前
莫言发布了新的文献求助30
16秒前
酷波er应助蓝海湾采纳,获得10
16秒前
17秒前
17秒前
自由的鸽子完成签到,获得积分20
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062428
求助须知:如何正确求助?哪些是违规求助? 4286268
关于积分的说明 13356749
捐赠科研通 4104095
什么是DOI,文献DOI怎么找? 2247300
邀请新用户注册赠送积分活动 1252893
关于科研通互助平台的介绍 1183800