A molecular networking-assisted automatic database screening strategy for comprehensive annotation of small molecules in complex matrices

化学 注释 Python(编程语言) 数据库 计算机科学 数据挖掘 人工智能 操作系统
作者
Xinlu Li,Zi-Fan Guo,Xiaodong Wen,Meng-Ning Li,Hua Yang
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1710: 464417-464417
标识
DOI:10.1016/j.chroma.2023.464417
摘要

Liquid chromatography-tandem with high-resolution mass spectrometry (LCHRMS) has proven challenging for annotating multiple small molecules within complex matrices due to the complexities of chemical structure and raw LCHRMS data, as well as limitations in previous literatures and reference spectra related to those molecules. In this study, we developed a molecular networking assisted automatic database screening (MN/auto-DBS) strategy to examine the combined effect of MS1 exact mass screening and MS2 similarity analysis. We compiled all previously reported compounds from the relevant literatures. With the development of a Python software, the in-house database (DB) was created by automatically calculating the m/z and data from experimental MS1 hits were rapid screened with DB. We then performed a feature-based molecular network analysis on the auto-MS2 data for supplementary identification of unreported compounds, including clustered FBMN and annotated GNPS compounds. Finally, the results from both strategies were merged and manually curated for correct structural assignment. To demonstrate the applicability of MN/auto-DBS, we selected the Huangqi-Danshen herb pair (HD), commonly used in prescriptions or patent medicines to treat diabetic nephropathy and cerebrovascular disease. A total of 223 compounds were annotated, including 65 molecules not previously reported in HD, such as aromatic polyketides, coumarins, and diarylheptanoids. Using MN/auto-DBS, we can profile and mine a wide range of complex matrices for potentially new compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
内向万天完成签到,获得积分10
1秒前
nikaido关注了科研通微信公众号
1秒前
Ftplanet发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
红桃EDC发布了新的文献求助10
1秒前
天天快乐应助yjh采纳,获得10
2秒前
秦苏发布了新的文献求助10
2秒前
伊绵好完成签到,获得积分10
2秒前
2秒前
风筝完成签到,获得积分10
2秒前
常葶完成签到,获得积分10
2秒前
xiaoyi完成签到,获得积分10
3秒前
aa发布了新的文献求助10
3秒前
3秒前
一拳一个小朋友完成签到,获得积分10
4秒前
光亮的青文完成签到 ,获得积分10
4秒前
zhdhh发布了新的文献求助10
4秒前
4秒前
4秒前
LIU关闭了LIU文献求助
4秒前
科研通AI6应助ma采纳,获得30
4秒前
bdJ发布了新的文献求助10
5秒前
天天快乐应助竹子快跑采纳,获得10
6秒前
蒋芳华完成签到,获得积分10
6秒前
了了发布了新的文献求助10
6秒前
6秒前
Zhaoyt发布了新的文献求助10
6秒前
华仔应助Susan采纳,获得10
6秒前
6秒前
7秒前
7秒前
肉song小贝完成签到,获得积分20
8秒前
流域之痕完成签到,获得积分10
8秒前
戳戳完成签到,获得积分10
8秒前
希望天下0贩的0应助Loststar采纳,获得10
8秒前
8秒前
清欢应助生物技术采纳,获得10
9秒前
丽晶洁愿完成签到 ,获得积分10
9秒前
无花果应助California采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647245
求助须知:如何正确求助?哪些是违规求助? 4773101
关于积分的说明 15038498
捐赠科研通 4805952
什么是DOI,文献DOI怎么找? 2570026
邀请新用户注册赠送积分活动 1526936
关于科研通互助平台的介绍 1485992