A molecular networking-assisted automatic database screening strategy for comprehensive annotation of small molecules in complex matrices

化学 注释 Python(编程语言) 数据库 计算机科学 数据挖掘 人工智能 操作系统
作者
Xinlu Li,Zi-Fan Guo,Xiaodong Wen,Meng-Ning Li,Hua Yang
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1710: 464417-464417
标识
DOI:10.1016/j.chroma.2023.464417
摘要

Liquid chromatography-tandem with high-resolution mass spectrometry (LCHRMS) has proven challenging for annotating multiple small molecules within complex matrices due to the complexities of chemical structure and raw LCHRMS data, as well as limitations in previous literatures and reference spectra related to those molecules. In this study, we developed a molecular networking assisted automatic database screening (MN/auto-DBS) strategy to examine the combined effect of MS1 exact mass screening and MS2 similarity analysis. We compiled all previously reported compounds from the relevant literatures. With the development of a Python software, the in-house database (DB) was created by automatically calculating the m/z and data from experimental MS1 hits were rapid screened with DB. We then performed a feature-based molecular network analysis on the auto-MS2 data for supplementary identification of unreported compounds, including clustered FBMN and annotated GNPS compounds. Finally, the results from both strategies were merged and manually curated for correct structural assignment. To demonstrate the applicability of MN/auto-DBS, we selected the Huangqi-Danshen herb pair (HD), commonly used in prescriptions or patent medicines to treat diabetic nephropathy and cerebrovascular disease. A total of 223 compounds were annotated, including 65 molecules not previously reported in HD, such as aromatic polyketides, coumarins, and diarylheptanoids. Using MN/auto-DBS, we can profile and mine a wide range of complex matrices for potentially new compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助强健的元冬采纳,获得10
刚刚
Doris完成签到,获得积分10
刚刚
淡定傲儿完成签到,获得积分10
刚刚
GLM发布了新的文献求助10
刚刚
魔幻安筠发布了新的文献求助10
1秒前
涛涛发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
IU丞完成签到,获得积分10
2秒前
2秒前
我是老大应助gy采纳,获得10
3秒前
y1439938345发布了新的文献求助10
3秒前
无心的月亮完成签到,获得积分10
3秒前
meng发布了新的文献求助10
3秒前
sifLiu发布了新的文献求助30
3秒前
YYY完成签到,获得积分10
3秒前
完美世界应助银鱼在游采纳,获得10
3秒前
3秒前
余九完成签到 ,获得积分10
4秒前
5秒前
动听的海亦完成签到,获得积分10
5秒前
wwy应助阿馨采纳,获得30
6秒前
芒果豆豆发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
CMUSK完成签到 ,获得积分10
6秒前
7秒前
zhou发布了新的文献求助10
7秒前
光亮的秋白完成签到 ,获得积分10
7秒前
爆米花应助张远最帅采纳,获得10
7秒前
7秒前
dbb发布了新的文献求助10
8秒前
8秒前
YOLO发布了新的文献求助10
8秒前
9秒前
杨旭完成签到,获得积分10
9秒前
完美世界应助无聊的小洁采纳,获得10
10秒前
10秒前
wifi发布了新的文献求助10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444