A molecular networking-assisted automatic database screening strategy for comprehensive annotation of small molecules in complex matrices

化学 注释 Python(编程语言) 数据库 计算机科学 数据挖掘 人工智能 操作系统
作者
Xinlu Li,Zifan Guo,Xiaodong Wen,Meng-Ning Li,Hua Yang
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1710: 464417-464417
标识
DOI:10.1016/j.chroma.2023.464417
摘要

Liquid chromatography-tandem with high-resolution mass spectrometry (LCHRMS) has proven challenging for annotating multiple small molecules within complex matrices due to the complexities of chemical structure and raw LCHRMS data, as well as limitations in previous literatures and reference spectra related to those molecules. In this study, we developed a molecular networking assisted automatic database screening (MN/auto-DBS) strategy to examine the combined effect of MS1 exact mass screening and MS2 similarity analysis. We compiled all previously reported compounds from the relevant literatures. With the development of a Python software, the in-house database (DB) was created by automatically calculating the m/z and data from experimental MS1 hits were rapid screened with DB. We then performed a feature-based molecular network analysis on the auto-MS2 data for supplementary identification of unreported compounds, including clustered FBMN and annotated GNPS compounds. Finally, the results from both strategies were merged and manually curated for correct structural assignment. To demonstrate the applicability of MN/auto-DBS, we selected the Huangqi-Danshen herb pair (HD), commonly used in prescriptions or patent medicines to treat diabetic nephropathy and cerebrovascular disease. A total of 223 compounds were annotated, including 65 molecules not previously reported in HD, such as aromatic polyketides, coumarins, and diarylheptanoids. Using MN/auto-DBS, we can profile and mine a wide range of complex matrices for potentially new compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
宓天问完成签到,获得积分10
3秒前
wyd完成签到,获得积分10
4秒前
kleine完成签到 ,获得积分10
7秒前
在水一方应助ZKJ采纳,获得10
9秒前
南风上北山完成签到,获得积分10
11秒前
13秒前
果冻完成签到,获得积分10
15秒前
AXXXin完成签到 ,获得积分10
18秒前
小二郎应助moon采纳,获得10
18秒前
19秒前
科研通AI2S应助Allen采纳,获得10
23秒前
天才大肥猫完成签到 ,获得积分10
23秒前
23秒前
Twikky完成签到,获得积分10
25秒前
Jasper应助憨憨采纳,获得10
26秒前
如意的擎宇完成签到,获得积分10
27秒前
FQZ发布了新的文献求助10
28秒前
Akim应助Hyh_采纳,获得10
31秒前
RRRZZ完成签到,获得积分10
34秒前
忍冬完成签到,获得积分20
35秒前
FQZ完成签到,获得积分10
36秒前
DCW完成签到 ,获得积分10
38秒前
星辰大海应助昏睡的雨寒采纳,获得10
40秒前
阿言完成签到 ,获得积分10
40秒前
41秒前
yg完成签到,获得积分20
42秒前
45秒前
ZKJ发布了新的文献求助10
46秒前
平常从蓉完成签到,获得积分10
46秒前
酷酷问梅完成签到,获得积分10
49秒前
50秒前
思源应助不正直跳跳糖采纳,获得10
50秒前
胡一刀完成签到,获得积分10
51秒前
56秒前
勇者先享受生活完成签到 ,获得积分10
56秒前
56秒前
大模型应助xiexie采纳,获得10
57秒前
CodeCraft应助逸群采纳,获得10
59秒前
内向乞完成签到 ,获得积分10
59秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140334
求助须知:如何正确求助?哪些是违规求助? 2791068
关于积分的说明 7797887
捐赠科研通 2447569
什么是DOI,文献DOI怎么找? 1301942
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194