A molecular networking-assisted automatic database screening strategy for comprehensive annotation of small molecules in complex matrices

化学 注释 Python(编程语言) 数据库 计算机科学 数据挖掘 人工智能 操作系统
作者
Xinlu Li,Zi-Fan Guo,Xiaodong Wen,Meng-Ning Li,Hua Yang
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1710: 464417-464417
标识
DOI:10.1016/j.chroma.2023.464417
摘要

Liquid chromatography-tandem with high-resolution mass spectrometry (LCHRMS) has proven challenging for annotating multiple small molecules within complex matrices due to the complexities of chemical structure and raw LCHRMS data, as well as limitations in previous literatures and reference spectra related to those molecules. In this study, we developed a molecular networking assisted automatic database screening (MN/auto-DBS) strategy to examine the combined effect of MS1 exact mass screening and MS2 similarity analysis. We compiled all previously reported compounds from the relevant literatures. With the development of a Python software, the in-house database (DB) was created by automatically calculating the m/z and data from experimental MS1 hits were rapid screened with DB. We then performed a feature-based molecular network analysis on the auto-MS2 data for supplementary identification of unreported compounds, including clustered FBMN and annotated GNPS compounds. Finally, the results from both strategies were merged and manually curated for correct structural assignment. To demonstrate the applicability of MN/auto-DBS, we selected the Huangqi-Danshen herb pair (HD), commonly used in prescriptions or patent medicines to treat diabetic nephropathy and cerebrovascular disease. A total of 223 compounds were annotated, including 65 molecules not previously reported in HD, such as aromatic polyketides, coumarins, and diarylheptanoids. Using MN/auto-DBS, we can profile and mine a wide range of complex matrices for potentially new compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥四发布了新的文献求助10
刚刚
caoxiongfeng_512完成签到,获得积分10
1秒前
yufanhui应助霍师傅采纳,获得10
1秒前
Allez应助霍师傅采纳,获得10
1秒前
怡然的人生完成签到,获得积分10
1秒前
2秒前
1234sxcv发布了新的文献求助10
4秒前
呆萌星星完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
Astoria完成签到,获得积分10
7秒前
Dasein2011完成签到,获得积分10
7秒前
Nn1发布了新的文献求助10
7秒前
8秒前
曾经的碧萱完成签到,获得积分10
8秒前
草莓苹果发布了新的文献求助10
9秒前
寒江雪发布了新的文献求助10
9秒前
Simon1640完成签到,获得积分10
9秒前
DDDD发布了新的文献求助30
10秒前
11秒前
yl发布了新的文献求助10
11秒前
11秒前
诗木发布了新的文献求助10
11秒前
李健的粉丝团团长应助Jin采纳,获得10
12秒前
天天快乐应助小泽又沐风采纳,获得10
12秒前
zjujirenjie完成签到,获得积分10
12秒前
12秒前
longer发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
万能图书馆应助fzzf采纳,获得10
13秒前
yyy发布了新的文献求助10
13秒前
斯文败类应助小李采纳,获得10
13秒前
云1完成签到,获得积分10
16秒前
草莓苹果发布了新的文献求助10
16秒前
大个应助ZZZZ采纳,获得10
18秒前
scfsl完成签到,获得积分10
18秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721182
求助须知:如何正确求助?哪些是违规求助? 5264527
关于积分的说明 15293440
捐赠科研通 4870438
什么是DOI,文献DOI怎么找? 2615484
邀请新用户注册赠送积分活动 1565349
关于科研通互助平台的介绍 1522340