Vectorized Evidential Learning for Weakly-Supervised Temporal Action Localization

人工智能 计算机科学 机器学习 杠杆(统计) 动作(物理) 量子力学 物理
作者
Junyu Gao,Mengyuan Chen,Changsheng Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (12): 15949-15963 被引量:29
标识
DOI:10.1109/tpami.2023.3311447
摘要

With the explosive growth of videos, weakly-supervised temporal action localization (WS-TAL) task has become a promising research direction in pattern analysis and machine learning. WS-TAL aims to detect and localize action instances with only video-level labels during training. Modern approaches have achieved impressive progress via powerful deep neural networks. However, robust and reliable WS-TAL remains challenging and underexplored due to considerable uncertainty caused by weak supervision, noisy evaluation environment, and unknown categories in the open world. To this end, we propose a new paradigm, named vectorized evidential learning (VEL), to explore local-to-global evidence collection for facilitating model performance. Specifically, a series of learnable meta-action units (MAUs) are automatically constructed, which serve as fundamental elements constituting diverse action categories. Since the same meta-action unit can manifest as distinct action components within different action categories, we leverage MAUs and category representations to dynamically and adaptively learn action components and action-component relations. After performing uncertainty estimation at both category-level and unit-level, the local evidence from action components is accumulated and optimized under the Subject Logic theory. Extensive experiments on the regular, noisy, and open-set settings of three popular benchmarks show that VEL consistently obtains more robust and reliable action localization performance than state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小果妈发布了新的文献求助10
刚刚
CA完成签到,获得积分10
刚刚
kmkz发布了新的文献求助10
2秒前
3秒前
Hello应助虎虎虎采纳,获得10
3秒前
小马甲应助流流124141采纳,获得10
3秒前
3秒前
所所应助我是张铁柱·采纳,获得10
4秒前
所所应助小尤菜采纳,获得10
4秒前
4秒前
Q清风慕竹完成签到,获得积分10
5秒前
5秒前
典雅的静完成签到,获得积分10
5秒前
5秒前
风中的玲发布了新的文献求助10
6秒前
月儿完成签到,获得积分10
7秒前
归海海之发布了新的文献求助10
8秒前
云汐儿应助科研通管家采纳,获得10
8秒前
敬老院N号应助科研通管家采纳,获得20
8秒前
搜集达人应助程大学采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
9秒前
此话当真发布了新的文献求助20
10秒前
清秀笑晴发布了新的文献求助30
10秒前
10秒前
久而久之完成签到 ,获得积分10
10秒前
abc完成签到,获得积分10
11秒前
啊啊啊啊发布了新的文献求助10
11秒前
huihui完成签到 ,获得积分10
11秒前
清久发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135173
求助须知:如何正确求助?哪些是违规求助? 2786162
关于积分的说明 7775843
捐赠科研通 2442066
什么是DOI,文献DOI怎么找? 1298380
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847