Vectorized Evidential Learning for Weakly-Supervised Temporal Action Localization

人工智能 计算机科学 机器学习 杠杆(统计) 动作(物理) 量子力学 物理
作者
Junyu Gao,Mengyuan Chen,Changsheng Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (12): 15949-15963 被引量:40
标识
DOI:10.1109/tpami.2023.3311447
摘要

With the explosive growth of videos, weakly-supervised temporal action localization (WS-TAL) task has become a promising research direction in pattern analysis and machine learning. WS-TAL aims to detect and localize action instances with only video-level labels during training. Modern approaches have achieved impressive progress via powerful deep neural networks. However, robust and reliable WS-TAL remains challenging and underexplored due to considerable uncertainty caused by weak supervision, noisy evaluation environment, and unknown categories in the open world. To this end, we propose a new paradigm, named vectorized evidential learning (VEL), to explore local-to-global evidence collection for facilitating model performance. Specifically, a series of learnable meta-action units (MAUs) are automatically constructed, which serve as fundamental elements constituting diverse action categories. Since the same meta-action unit can manifest as distinct action components within different action categories, we leverage MAUs and category representations to dynamically and adaptively learn action components and action-component relations. After performing uncertainty estimation at both category-level and unit-level, the local evidence from action components is accumulated and optimized under the Subject Logic theory. Extensive experiments on the regular, noisy, and open-set settings of three popular benchmarks show that VEL consistently obtains more robust and reliable action localization performance than state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jajjjjaa发布了新的文献求助10
刚刚
科研通AI2S应助菲菲呀采纳,获得10
1秒前
乐闻发布了新的文献求助10
1秒前
2秒前
爱听歌电灯胆完成签到 ,获得积分10
5秒前
6秒前
鲤鱼幼晴完成签到 ,获得积分10
7秒前
8秒前
小只完成签到,获得积分20
8秒前
8秒前
菲菲呀完成签到,获得积分10
10秒前
周声声发布了新的文献求助30
11秒前
12秒前
13秒前
胖达发布了新的文献求助10
14秒前
iNk应助ZONG采纳,获得20
15秒前
Jasper应助任性一兰采纳,获得10
17秒前
17秒前
三七完成签到,获得积分10
18秒前
桐桐应助wmmm采纳,获得10
18秒前
缓慢的黑夜完成签到,获得积分10
20秒前
20秒前
包子凯越完成签到,获得积分10
20秒前
20秒前
胖达完成签到,获得积分10
20秒前
lucky发布了新的文献求助10
21秒前
22秒前
Hello应助rio采纳,获得10
22秒前
24秒前
ZONG完成签到,获得积分10
24秒前
游一发布了新的文献求助10
25秒前
25秒前
25秒前
26秒前
Eleven完成签到,获得积分10
26秒前
26秒前
LINHAI发布了新的文献求助10
27秒前
安详的自中完成签到,获得积分10
28秒前
28秒前
Linzi发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260505
捐赠科研通 3272347
什么是DOI,文献DOI怎么找? 1805732
邀请新用户注册赠送积分活动 882637
科研通“疑难数据库(出版商)”最低求助积分说明 809425