亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Vectorized Evidential Learning for Weakly-Supervised Temporal Action Localization

人工智能 计算机科学 机器学习 杠杆(统计) 动作(物理) 量子力学 物理
作者
Junyu Gao,Mengyuan Chen,Changsheng Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (12): 15949-15963 被引量:40
标识
DOI:10.1109/tpami.2023.3311447
摘要

With the explosive growth of videos, weakly-supervised temporal action localization (WS-TAL) task has become a promising research direction in pattern analysis and machine learning. WS-TAL aims to detect and localize action instances with only video-level labels during training. Modern approaches have achieved impressive progress via powerful deep neural networks. However, robust and reliable WS-TAL remains challenging and underexplored due to considerable uncertainty caused by weak supervision, noisy evaluation environment, and unknown categories in the open world. To this end, we propose a new paradigm, named vectorized evidential learning (VEL), to explore local-to-global evidence collection for facilitating model performance. Specifically, a series of learnable meta-action units (MAUs) are automatically constructed, which serve as fundamental elements constituting diverse action categories. Since the same meta-action unit can manifest as distinct action components within different action categories, we leverage MAUs and category representations to dynamically and adaptively learn action components and action-component relations. After performing uncertainty estimation at both category-level and unit-level, the local evidence from action components is accumulated and optimized under the Subject Logic theory. Extensive experiments on the regular, noisy, and open-set settings of three popular benchmarks show that VEL consistently obtains more robust and reliable action localization performance than state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
顺颂时祺发布了新的文献求助10
9秒前
12秒前
38秒前
FG发布了新的文献求助10
42秒前
45秒前
49秒前
tt完成签到,获得积分20
49秒前
tt发布了新的文献求助10
52秒前
ceeray23发布了新的文献求助30
53秒前
56秒前
ho应助科研通管家采纳,获得10
57秒前
ho应助科研通管家采纳,获得10
57秒前
kentonchow应助气945采纳,获得10
57秒前
1分钟前
学术小菜鸟完成签到 ,获得积分10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
洁净的千凡完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Alice发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Shawn发布了新的文献求助10
2分钟前
Alice完成签到,获得积分20
2分钟前
cao_bq完成签到,获得积分10
2分钟前
2分钟前
2分钟前
genius_yue发布了新的文献求助30
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
ho应助科研通管家采纳,获得10
2分钟前
3分钟前
hsj完成签到,获得积分10
3分钟前
genius_yue完成签到,获得积分10
3分钟前
3分钟前
潇洒的月光完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376400
求助须知:如何正确求助?哪些是违规求助? 4501498
关于积分的说明 14013106
捐赠科研通 4409293
什么是DOI,文献DOI怎么找? 2422135
邀请新用户注册赠送积分活动 1414947
关于科研通互助平台的介绍 1391827