Path Planning for the Gantry Welding Robot System Based on Improved RRT*

运动规划 路径(计算) 节点(物理) 机器人 灵活性(工程) 工作区 计算机科学 路径长度 数学优化 采样(信号处理) 模拟 实时计算 工程类 人工智能 数学 计算机网络 统计 结构工程 程序设计语言 滤波器(信号处理) 计算机视觉
作者
Xuewu Wang,Jin Gao,Xin Zhou,Xingsheng Gu
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:85: 102643-102643 被引量:32
标识
DOI:10.1016/j.rcim.2023.102643
摘要

In the shipbuilding industry, various workpieces are often produced in small batches. A new program must be written for new workpiece to be processed, which leads to the inefficiency of the traditional teaching programming method. In particular, some manufacturers have applied large gantry structures to robots to improve their handling space. Although the external positioning device enhances the robot's flexibility, it also increases the difficulty of path planning. The RRT* algorithm based on sampling is widely used in the path planning of manipulator for its efficient expansibility and probability completeness. However, in the robot system equipped with gantry structure, the increase of freedom makes its efficiency relatively low. Therefore, this article presents an improved RRT* algorithm for autonomous path planning of welding robots with a large gantry structure. This method introduces the sampling pool mechanism, and selects the node nearest to the connection line between the starting node and the target node in the sampling pool, which effectively shortens the length of the search path. In addition, it adopts the strategy of limiting the nearest node to prevent the transitional search of the configuration space. The improved RRT* algorithm proposed in this paper is verified in complex environment, and compared with improved algorithms such as IB-RRT*, the path cost and time cost are increased by 22.2% and 32.5%, respectively, and the success rate is relatively stable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助中中采纳,获得10
1秒前
七qiqi发布了新的文献求助10
1秒前
慕青应助FJLSDNMV采纳,获得10
1秒前
艺玲发布了新的文献求助10
2秒前
2秒前
鱼在哪儿完成签到,获得积分10
3秒前
慕青应助铁皮采纳,获得10
3秒前
山晴完成签到 ,获得积分10
3秒前
想喝奶茶完成签到,获得积分10
3秒前
5秒前
5秒前
黄晓杰2024完成签到 ,获得积分10
5秒前
XMY完成签到,获得积分10
6秒前
Synan发布了新的文献求助10
6秒前
6秒前
9秒前
曾经的寇发布了新的文献求助10
9秒前
谭嘻嘻完成签到,获得积分10
10秒前
鱼在哪儿发布了新的文献求助10
10秒前
科研通AI6应助mengtong采纳,获得10
11秒前
12秒前
故意的可愁完成签到 ,获得积分10
12秒前
13秒前
潦草小狗发布了新的文献求助10
14秒前
15秒前
人九完成签到 ,获得积分10
16秒前
16秒前
123321发布了新的文献求助10
17秒前
奶油蜜豆卷完成签到,获得积分10
17秒前
小蘑菇应助湿地小怪兽采纳,获得10
19秒前
19秒前
汉堡包应助OO的牛马采纳,获得10
19秒前
20秒前
xiaomengzi完成签到,获得积分20
20秒前
孙兆杰完成签到,获得积分10
20秒前
20秒前
22秒前
22秒前
mmm完成签到,获得积分10
22秒前
FJLSDNMV发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643722
求助须知:如何正确求助?哪些是违规求助? 4761848
关于积分的说明 15022054
捐赠科研通 4801980
什么是DOI,文献DOI怎么找? 2567203
邀请新用户注册赠送积分活动 1524860
关于科研通互助平台的介绍 1484451