Path Planning for the Gantry Welding Robot System Based on Improved RRT*

运动规划 路径(计算) 节点(物理) 机器人 灵活性(工程) 工作区 计算机科学 路径长度 数学优化 采样(信号处理) 模拟 实时计算 工程类 人工智能 数学 计算机网络 统计 结构工程 程序设计语言 滤波器(信号处理) 计算机视觉
作者
Xuewu Wang,Jin Gao,Xin Zhou,Xingsheng Gu
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:85: 102643-102643 被引量:35
标识
DOI:10.1016/j.rcim.2023.102643
摘要

In the shipbuilding industry, various workpieces are often produced in small batches. A new program must be written for new workpiece to be processed, which leads to the inefficiency of the traditional teaching programming method. In particular, some manufacturers have applied large gantry structures to robots to improve their handling space. Although the external positioning device enhances the robot's flexibility, it also increases the difficulty of path planning. The RRT* algorithm based on sampling is widely used in the path planning of manipulator for its efficient expansibility and probability completeness. However, in the robot system equipped with gantry structure, the increase of freedom makes its efficiency relatively low. Therefore, this article presents an improved RRT* algorithm for autonomous path planning of welding robots with a large gantry structure. This method introduces the sampling pool mechanism, and selects the node nearest to the connection line between the starting node and the target node in the sampling pool, which effectively shortens the length of the search path. In addition, it adopts the strategy of limiting the nearest node to prevent the transitional search of the configuration space. The improved RRT* algorithm proposed in this paper is verified in complex environment, and compared with improved algorithms such as IB-RRT*, the path cost and time cost are increased by 22.2% and 32.5%, respectively, and the success rate is relatively stable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行知完成签到,获得积分10
刚刚
木悠发布了新的文献求助10
2秒前
pakutan发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
6秒前
YinWenjie完成签到,获得积分10
9秒前
思源应助悦悦要早睡哦采纳,获得10
10秒前
晴天发布了新的文献求助10
10秒前
eric完成签到,获得积分10
11秒前
12秒前
pakutan完成签到,获得积分10
12秒前
Hello应助栉风沐雨采纳,获得10
15秒前
梅思寒完成签到 ,获得积分10
17秒前
wwwjy完成签到 ,获得积分10
18秒前
18秒前
淡淡青枫完成签到,获得积分10
20秒前
大气指甲油完成签到,获得积分10
21秒前
易水完成签到 ,获得积分10
22秒前
孙小小完成签到,获得积分20
24秒前
小太阳在营业应助ASDq采纳,获得30
24秒前
26秒前
D.fdc发布了新的文献求助10
28秒前
31秒前
ltt应助ne采纳,获得10
33秒前
英勇的黑猫完成签到,获得积分10
34秒前
37秒前
37秒前
FashionBoy应助hainan采纳,获得10
39秒前
39秒前
39秒前
善学以致用应助yohoo采纳,获得10
39秒前
41秒前
认真白萱完成签到,获得积分10
41秒前
文静幼荷完成签到 ,获得积分10
44秒前
big张发布了新的文献求助10
44秒前
yfjia应助automan采纳,获得10
46秒前
yang发布了新的文献求助10
48秒前
nicole_Jones发布了新的文献求助10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872826
求助须知:如何正确求助?哪些是违规求助? 6492621
关于积分的说明 15670004
捐赠科研通 4990251
什么是DOI,文献DOI怎么找? 2690186
邀请新用户注册赠送积分活动 1632687
关于科研通互助平台的介绍 1590578