Path Planning for the Gantry Welding Robot System Based on Improved RRT*

运动规划 路径(计算) 节点(物理) 机器人 灵活性(工程) 工作区 计算机科学 路径长度 数学优化 采样(信号处理) 模拟 实时计算 工程类 人工智能 数学 计算机网络 统计 结构工程 程序设计语言 滤波器(信号处理) 计算机视觉
作者
Xuewu Wang,Jin Gao,Xin Zhou,Xingsheng Gu
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:85: 102643-102643 被引量:32
标识
DOI:10.1016/j.rcim.2023.102643
摘要

In the shipbuilding industry, various workpieces are often produced in small batches. A new program must be written for new workpiece to be processed, which leads to the inefficiency of the traditional teaching programming method. In particular, some manufacturers have applied large gantry structures to robots to improve their handling space. Although the external positioning device enhances the robot's flexibility, it also increases the difficulty of path planning. The RRT* algorithm based on sampling is widely used in the path planning of manipulator for its efficient expansibility and probability completeness. However, in the robot system equipped with gantry structure, the increase of freedom makes its efficiency relatively low. Therefore, this article presents an improved RRT* algorithm for autonomous path planning of welding robots with a large gantry structure. This method introduces the sampling pool mechanism, and selects the node nearest to the connection line between the starting node and the target node in the sampling pool, which effectively shortens the length of the search path. In addition, it adopts the strategy of limiting the nearest node to prevent the transitional search of the configuration space. The improved RRT* algorithm proposed in this paper is verified in complex environment, and compared with improved algorithms such as IB-RRT*, the path cost and time cost are increased by 22.2% and 32.5%, respectively, and the success rate is relatively stable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
铁铁发布了新的文献求助30
刚刚
刘北固完成签到,获得积分20
1秒前
完美世界应助Kayson采纳,获得10
1秒前
在水一方应助箜篌采纳,获得10
2秒前
DiaHu完成签到,获得积分20
2秒前
2秒前
3秒前
momo发布了新的文献求助10
3秒前
wxt发布了新的文献求助10
3秒前
cola完成签到,获得积分10
3秒前
FlyingAxe完成签到,获得积分10
4秒前
4秒前
LL发布了新的文献求助10
4秒前
4秒前
彩色如南完成签到 ,获得积分10
5秒前
张若愚发布了新的文献求助10
6秒前
6秒前
Lv完成签到,获得积分20
7秒前
王心桐发布了新的文献求助10
7秒前
只想摆烂发布了新的文献求助20
7秒前
7秒前
dgqz发布了新的文献求助10
7秒前
8秒前
英姑应助刘北固采纳,获得10
8秒前
9秒前
9秒前
kiball发布了新的文献求助10
10秒前
满满发布了新的文献求助10
10秒前
10秒前
奋进中的科研小菜鸟完成签到,获得积分20
11秒前
乐乐应助张若愚采纳,获得10
11秒前
谦让谷菱发布了新的文献求助10
12秒前
Jasper应助难过飞瑶采纳,获得10
13秒前
594612发布了新的文献求助10
13秒前
13秒前
14秒前
666发布了新的文献求助10
14秒前
科研通AI2S应助欢呼墨镜采纳,获得30
14秒前
Lucas应助张雅露采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609888
求助须知:如何正确求助?哪些是违规求助? 4694483
关于积分的说明 14882481
捐赠科研通 4720586
什么是DOI,文献DOI怎么找? 2544960
邀请新用户注册赠送积分活动 1509797
关于科研通互助平台的介绍 1473002