Automatic brain extraction for rat magnetic resonance imaging data using U2-Net

雅卡索引 Sørensen–骰子系数 人工智能 分割 计算机科学 磁共振成像 像素 试验装置 模式识别(心理学) 变异系数 核医学 图像分割 数学 统计 医学 放射科
作者
Shengxiang Liang,Xu-Cheng Yin,Li Huang,Jiayan Huang,Junchao Yang,Xiuxiu Wang,Lixin Peng,Yusi Zhang,Zuanfang Li,Binbin Nie,Jin‐Hui Tao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (20): 205006-205006 被引量:1
标识
DOI:10.1088/1361-6560/acf641
摘要

Objective.Skull stripping is a key step in the pre-processing of rodent brain magnetic resonance images (MRI). This study aimed to develop a new skull stripping method via U2-Net, a neural network model based on deep learning method, for rat brain MRI.Approach.In this study, 599 rats were enrolled and U2-Net was applied to segment MRI images of rat brain. The intercranial tissue of each rat was manually labeled. 476 rats (approximate 80%) were used for training set while 123 rats (approximate 20%) were used to test the performance of the trained U2-Net model. For evaluation, the segmentation result by the U2-Net model is compared with the manual label, and traditional segment methods. Quantitative evaluation, including Dice coefficient, Jaccard coefficient, Sensitivity, Specificity, Pixel accuracy, Hausdorff coefficient, True positive rate, False positive rate and the volumes of whole brain, were calculated to compare the segmentation results among different models.Main results.The U2-Net model was performed better than the software of RATS and BrainSuite, in which the quantitative values of training U2-Net model were 0.9907 ± 0.0016 (Dice coefficient), 0.9816 ± 0.0032 (Jaccard coefficient), 0.9912 ± 0.0020 (Sensitivity), 0.9989 ± 0.0002 (Specificity), 0.9982 ± 0.0003 (Pixel accuracy), 5.2390 ± 2.5334 (Hausdorff coefficient), 0.9902 ± 0.0025 (True positive rate), 0.0009 ± 0.0002(False positive rate) respectively.Significance.This study provides a new method that achieves reliable performance in rat brain skull stripping of MRI images, which could contribute to the processing of rat brain MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ATLI应助xf采纳,获得10
刚刚
1秒前
2秒前
21GolDiamond完成签到,获得积分10
2秒前
zhangsenbing发布了新的文献求助10
6秒前
赘婿应助花卷儿采纳,获得10
7秒前
研友_Z7Xdl8发布了新的文献求助10
7秒前
YataMisaki发布了新的文献求助30
7秒前
大龙哥886完成签到,获得积分0
9秒前
英姑应助yrh采纳,获得10
10秒前
11秒前
欣慰的雪柳完成签到,获得积分10
12秒前
嘻嘻哈哈完成签到 ,获得积分10
12秒前
莀莀完成签到 ,获得积分10
13秒前
kk关注了科研通微信公众号
13秒前
Steven发布了新的文献求助10
16秒前
16秒前
...完成签到,获得积分10
19秒前
皮皮完成签到 ,获得积分10
20秒前
20秒前
21秒前
一只杨发布了新的文献求助10
22秒前
Apple发布了新的文献求助10
23秒前
大猪完成签到 ,获得积分10
24秒前
羽宇发布了新的文献求助10
25秒前
makeincraze发布了新的文献求助10
25秒前
26秒前
yrh发布了新的文献求助10
28秒前
Orange应助小白采纳,获得10
28秒前
29秒前
31秒前
酷波er应助ff采纳,获得10
32秒前
羽宇完成签到,获得积分10
32秒前
35秒前
XinX完成签到,获得积分10
37秒前
852应助谦让的青雪采纳,获得10
39秒前
40秒前
任风完成签到,获得积分10
41秒前
小白发布了新的文献求助10
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673961
求助须知:如何正确求助?哪些是违规求助? 3229371
关于积分的说明 9785618
捐赠科研通 2939954
什么是DOI,文献DOI怎么找? 1611546
邀请新用户注册赠送积分活动 760987
科研通“疑难数据库(出版商)”最低求助积分说明 736344