Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process

风速 期限(时间) 气象学 师(数学) 风力发电 环境科学 聚类分析 过程(计算) 计算机科学 工程类 数学 人工智能 量子力学 算术 操作系统 电气工程 物理
作者
Mao Yang,Yunfeng Guo,Y. Huang
出处
期刊:Energy [Elsevier]
卷期号:282: 128947-128947 被引量:37
标识
DOI:10.1016/j.energy.2023.128947
摘要

Wind power prediction technology is important for building novel power systems with a high proportion of renewable energy. The quality of Numerical weather prediction (NWP) has a significant impact on the accuracy of ultra-short-term wind power prediction (USTWPP). However, existing NWP do not reflect the adaptability of different weather processes, because of it’ s forecasting errors. In view of this, this paper proposes an USTWPP method based on NWP wind speed correction and division of transitional weather process. The combined prediction method was first used to correct the NWP wind speed, and then we use the double clustering method to divide the transitional weather processes to establish a model for USTWPP based on different scenarios, the overall method was finally applied to a wind farm in west inner Mongolia, China. Compared to the pre-correction, the wind speed forecasted RMSE was reduced by 1.702 and the MAE by 1.366. Based on the wind power ultra-short-term prediction method proposed in this paper, the average reduction in RMSE is 5.93% and in MAE is 4.82% compared to the various comparison methods in the four seasons. The USTWPP method combining wind speed correction and double clustering division of transitional weather scenarios can significantly improve accuracy of USTWPP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱半凡发布了新的文献求助10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
JHJ发布了新的文献求助10
1秒前
深情安青应助光亮烤鸡采纳,获得10
1秒前
思源应助光亮烤鸡采纳,获得10
1秒前
慕青应助光亮烤鸡采纳,获得10
2秒前
酷波er应助光亮烤鸡采纳,获得10
2秒前
领导范儿应助zhangyida采纳,获得10
2秒前
3秒前
香蕉觅云应助liz采纳,获得50
3秒前
3秒前
傻傻的山灵完成签到,获得积分10
3秒前
3秒前
4秒前
xiaobai发布了新的文献求助10
4秒前
4秒前
Zx_1993应助mario采纳,获得10
4秒前
4秒前
知秋发布了新的文献求助10
5秒前
5秒前
6秒前
林新宇发布了新的文献求助10
7秒前
7秒前
aaaaaawwwww发布了新的文献求助10
8秒前
ZeKaWa应助BBB采纳,获得10
8秒前
科研通AI6应助CBWKEYANTONG123采纳,获得10
8秒前
8秒前
9秒前
充电宝应助善良高山采纳,获得10
9秒前
研友_Y59685完成签到,获得积分10
10秒前
10秒前
10秒前
谢大喵应助天青111采纳,获得30
10秒前
852应助JHJ采纳,获得10
10秒前
梅莉达完成签到,获得积分10
10秒前
lx完成签到,获得积分10
11秒前
11秒前
舒适香露发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546309
求助须知:如何正确求助?哪些是违规求助? 4632193
关于积分的说明 14625447
捐赠科研通 4573861
什么是DOI,文献DOI怎么找? 2507851
邀请新用户注册赠送积分活动 1484503
关于科研通互助平台的介绍 1455714