Highly Uniform Self-Assembly of Gold Nanoparticles by Butanol-Induced Dehydration and Its SERS Applications in SARS-CoV-2 Detection

化学 胶体金 检出限 生物分子 丁醇 基质(水族馆) 拉曼光谱 表面增强拉曼光谱 拉曼散射 纳米技术 正丁醇 纳米颗粒 色谱法 材料科学 乙醇 有机化学 光学 海洋学 物理 地质学
作者
Yixuan Wu,Qian Yu,Younju Joung,Chang Su Jeon,Seunghyun Lee,Sung Hyun Pyun,Sang‐Woo Joo,Lingxin Chen,Jaebum Choo
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (34): 12710-12718 被引量:13
标识
DOI:10.1021/acs.analchem.3c01348
摘要

We report the development of a reproducible and highly sensitive surface-enhanced Raman scattering (SERS) substrate using a butanol-induced self-assembly of gold nanoparticles (AuNPs) and its application as a rapid diagnostic platform for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The butanol-induced self-assembly process was used to generate a uniform assembly of AuNPs, with multiple hotspots, to achieve high reproducibility. When an aqueous droplet containing AuNPs and target DNAs was dropped onto a butanol droplet, butanol-induced dehydration occurred, enriching the target DNAs around the AuNPs and increasing the loading density of the DNAs on the AuNP surface. The SERS substrate was evaluated by using Raman spectroscopy, which showed strong electromagnetic enhancement of the Raman signals. The substrate was then tested for the detection of SARS-CoV-2 using SERS, and a very low limit of detection (LoD) of 3.1 × 10-15 M was obtained. This provides sufficient sensitivity for the SARS-CoV-2 screening assay, and the diagnostic time is significantly reduced as no thermocycling steps are required. This study demonstrates a method for the butanol-induced self-assembly of AuNPs and its application as a highly sensitive and reproducible SERS substrate for the rapid detection of SARS-CoV-2. The results suggest the potential of this approach for developing rapid diagnostic platforms for other biomolecules and infectious diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu发布了新的文献求助10
刚刚
知了发布了新的文献求助10
刚刚
Menloar完成签到,获得积分10
1秒前
1秒前
张土豆发布了新的文献求助10
2秒前
woshiwuziq发布了新的文献求助20
2秒前
3秒前
onward发布了新的文献求助10
4秒前
bkagyin应助锂电阳离子无序采纳,获得10
5秒前
6秒前
9秒前
12秒前
Cassiel发布了新的文献求助30
12秒前
迟大猫应助azmj采纳,获得10
12秒前
搜集达人应助hydra351采纳,获得10
13秒前
YU发布了新的文献求助150
13秒前
14秒前
15秒前
15秒前
15秒前
Owen应助心若向阳采纳,获得10
16秒前
16秒前
cx发布了新的文献求助10
17秒前
英俊溪灵发布了新的文献求助10
17秒前
琦琦完成签到,获得积分0
19秒前
小盖发布了新的文献求助10
19秒前
徐小树发布了新的文献求助10
19秒前
20秒前
21秒前
22秒前
22秒前
DDDD源发布了新的文献求助10
23秒前
小萌新完成签到,获得积分10
24秒前
25秒前
xiaolan完成签到 ,获得积分10
25秒前
26秒前
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
研友_VZG7GZ应助科研通管家采纳,获得80
26秒前
酷波er应助科研通管家采纳,获得10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526144
求助须知:如何正确求助?哪些是违规求助? 3106527
关于积分的说明 9280744
捐赠科研通 2804127
什么是DOI,文献DOI怎么找? 1539278
邀请新用户注册赠送积分活动 716514
科研通“疑难数据库(出版商)”最低求助积分说明 709495