Autofocusing for Synthetic Aperture Imaging Based on Pedestrian Trajectory Prediction

计算机科学 人工智能 计算机视觉 弹道 行人 自编码 透视图(图形) 深度学习 地理 天文 物理 考古
作者
Zhao Pei,Jiaqing Zhang,Wenwen Zhang,Miao Wang,Jianing Wang,Yee‐Hong Yang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 3551-3562 被引量:1
标识
DOI:10.1109/tcsvt.2023.3314895
摘要

Occlusions and complex backgrounds are common factors that hinder many computer vision applications. In a street scene, the challenge of accurately predicting pedestrian trajectories comes from the complexity of human behavior and the diversity of the external environment. It is difficult, if not impossible, to extract relevant information to accurately predict pedestrian trajectories in dynamic scenes. Synthetic aperture imaging (SAI) uses an array of cameras to mimic a camera with a large virtual convex lens by projecting images of a scene from different views onto a virtual focal plane. It is commonly used to reconstruct occluded objects, and in a street scene, can provide observation of pedestrians occluded by other objects and pedestrians. In this paper, we propose a joint prediction method based on autofocusing of SAI to predict pedestrian trajectories in dynamic scenes. The main contributions of this paper include: 1) The task of pedestrian trajectory prediction in dynamic scenarios is redefined as pedestrian trajectory prediction and SAI autofocusing from a practical but more challenging perspective. 2) The proposed method is based on an existing SAI-based method to extract information in heavily occluded views, which can obtain more accurate results but with less computational cost and without using other sensors such as LiDAR or depth cameras. 3) A new pedestrian trajectory prediction model, an attention-based trajectory prediction variational autoencoder (ATP-VAE), is proposed to extract complex human behavior and social interactions in dynamic scenes through a new Intention Attention Unit. The experimental results on multiple public datasets show that the proposed method achieves state-of-the-art results in the first-person perspective and in aerial view.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
tracer完成签到,获得积分10
1秒前
mhy完成签到 ,获得积分10
1秒前
欣欣发布了新的文献求助10
1秒前
花生酱发布了新的文献求助10
1秒前
dj完成签到,获得积分10
1秒前
1秒前
3秒前
田様应助诚心靳采纳,获得10
4秒前
NexusExplorer应助董晏殊采纳,获得10
4秒前
爱因斯宣发布了新的文献求助10
4秒前
李健的小迷弟应助lenon采纳,获得10
4秒前
4秒前
桐桐应助张文静采纳,获得30
5秒前
5秒前
金不换发布了新的文献求助10
5秒前
Grace完成签到,获得积分10
5秒前
苏氨酸发布了新的文献求助10
5秒前
明亮的绫发布了新的文献求助10
5秒前
赘婿应助yier采纳,获得10
6秒前
6秒前
kyleaa发布了新的文献求助10
6秒前
bey发布了新的文献求助10
6秒前
小飞飞完成签到,获得积分10
7秒前
7秒前
伊戈达拉一个大拉完成签到,获得积分10
8秒前
niat发布了新的文献求助10
8秒前
8秒前
卡卡123发布了新的文献求助10
9秒前
轻松的惜芹应助苦哈哈采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
李爱国应助樊小雾采纳,获得10
11秒前
5High_0发布了新的文献求助10
12秒前
搜集达人应助祥子的骆驼采纳,获得10
12秒前
小二郎应助mm采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650