Autofocusing for Synthetic Aperture Imaging Based on Pedestrian Trajectory Prediction

计算机科学 人工智能 计算机视觉 弹道 行人 自编码 透视图(图形) 深度学习 地理 物理 考古 天文
作者
Zhao Pei,Jiaqing Zhang,Wenwen Zhang,Miao Wang,Jianing Wang,Yee‐Hong Yang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 3551-3562 被引量:1
标识
DOI:10.1109/tcsvt.2023.3314895
摘要

Occlusions and complex backgrounds are common factors that hinder many computer vision applications. In a street scene, the challenge of accurately predicting pedestrian trajectories comes from the complexity of human behavior and the diversity of the external environment. It is difficult, if not impossible, to extract relevant information to accurately predict pedestrian trajectories in dynamic scenes. Synthetic aperture imaging (SAI) uses an array of cameras to mimic a camera with a large virtual convex lens by projecting images of a scene from different views onto a virtual focal plane. It is commonly used to reconstruct occluded objects, and in a street scene, can provide observation of pedestrians occluded by other objects and pedestrians. In this paper, we propose a joint prediction method based on autofocusing of SAI to predict pedestrian trajectories in dynamic scenes. The main contributions of this paper include: 1) The task of pedestrian trajectory prediction in dynamic scenarios is redefined as pedestrian trajectory prediction and SAI autofocusing from a practical but more challenging perspective. 2) The proposed method is based on an existing SAI-based method to extract information in heavily occluded views, which can obtain more accurate results but with less computational cost and without using other sensors such as LiDAR or depth cameras. 3) A new pedestrian trajectory prediction model, an attention-based trajectory prediction variational autoencoder (ATP-VAE), is proposed to extract complex human behavior and social interactions in dynamic scenes through a new Intention Attention Unit. The experimental results on multiple public datasets show that the proposed method achieves state-of-the-art results in the first-person perspective and in aerial view.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烫嘴普通话完成签到,获得积分0
4秒前
miao123完成签到 ,获得积分10
4秒前
hesven完成签到 ,获得积分10
5秒前
9秒前
英俊绿海完成签到 ,获得积分10
10秒前
高大厉完成签到 ,获得积分10
13秒前
龙傲天完成签到,获得积分10
16秒前
16秒前
18秒前
22秒前
lelele发布了新的文献求助10
25秒前
Raymond发布了新的文献求助10
26秒前
yyyyyy完成签到 ,获得积分10
28秒前
陌子完成签到 ,获得积分10
32秒前
lelele完成签到,获得积分10
33秒前
沉默寻凝完成签到,获得积分10
34秒前
冷静傲丝完成签到 ,获得积分10
35秒前
wanci应助Raymond采纳,获得10
36秒前
苏苏爱学习完成签到,获得积分10
37秒前
阡陌完成签到,获得积分10
39秒前
Polymer72应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
书生完成签到,获得积分10
43秒前
44秒前
48秒前
橙子完成签到 ,获得积分10
48秒前
ywsss完成签到,获得积分10
56秒前
英俊的铭应助一个小胖子采纳,获得10
57秒前
Ade完成签到,获得积分10
59秒前
山雀完成签到,获得积分10
59秒前
大白沙子完成签到,获得积分10
59秒前
只喝白开水完成签到 ,获得积分10
1分钟前
媛媛子完成签到,获得积分10
1分钟前
1分钟前
六步郎完成签到 ,获得积分10
1分钟前
Richard完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
PengHu完成签到,获得积分10
1分钟前
BA1完成签到,获得积分10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339107
求助须知:如何正确求助?哪些是违规求助? 2967059
关于积分的说明 8628085
捐赠科研通 2646543
什么是DOI,文献DOI怎么找? 1449277
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660176