A graphics-accelerated deep neural network approach for turbomachinery flows based on large eddy simulation

涡轮机械 物理 图形处理单元 湍流 涡流 轴流压缩机 自编码 大涡模拟 卷积神经网络 流量(数学) 涡度 计算流体力学 流动可视化 人工神经网络 计算机科学 人工智能 计算科学 机械 气体压缩机 并行计算 热力学
作者
Zheming Tong,Jiage Xin,Jiaying Song,Xiangkun Elvis Cao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (9) 被引量:2
标识
DOI:10.1063/5.0160968
摘要

In turbomachinery, strongly unsteady rotor–stator interaction triggers complex three-dimensional turbulent flow phenomena such as flow separation and vortex dynamics. Large eddy simulation (LES) is an advanced numerical method that has recently been used to resolve large-scale turbulent motions and model subgrid-scale turbulence in turbomachinery. To largely reduce the computing cost of LES for turbomachinery flow, a graphics processing unit (GPU)-accelerated deep neural network-based flow field prediction approach is explored, which combines convolutional neural network autoencoder (CNN-AE) with long short-term memory (LSTM). CNN-AE extracts spatial features of turbomachinery flow by mapping high-dimensional flow fields into low-dimensional space, while LSTM is used to predict the temporal evolution of fluid dynamics. Automatic mixed precision (AMP) is employed to achieve rapid neural network training using Nvidia GTX 1080 Ti GPU, which shows a significant speedup compared with that without AMP. We evaluated the proposed CNN-AE-LSTM (CAL) method against gated recurrent units (GRU) and simple recurrent network (SRN) on two types of turbomachinery, i.e., centrifugal and axial flow pumps. The results show that the proposed CAL shows better capability of capturing the vortex structure details of turbomachinery. When predicting the temporal vorticity field, the mean square error of CAL results is 0.105%–0.124% for centrifugal pumps and 0.071%–0.072% for axial flow pumps. Meanwhile, the structural similarity index measure of the CAL results is 92.51%–92.77% for centrifugal pumps and 93.81%–94.61% for axial flow pumps. The proposed CAL is noticeably better than GRU and SRN in terms of both mean square error and structural similarity index measure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助猫猫无敌采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
3秒前
爆米花应助刁弘睿采纳,获得10
3秒前
3秒前
3秒前
缥缈海云完成签到,获得积分10
3秒前
4秒前
斯文败类应助沙场秋点兵采纳,获得10
5秒前
123完成签到,获得积分10
5秒前
6秒前
无辜问玉发布了新的文献求助10
6秒前
6秒前
7秒前
谨慎乐安发布了新的文献求助10
7秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
缥缈海云发布了新的文献求助10
10秒前
mylaodao发布了新的文献求助10
10秒前
11秒前
chen完成签到,获得积分10
12秒前
拾贰月发布了新的文献求助10
12秒前
俊杰完成签到,获得积分10
13秒前
阿菜完成签到,获得积分10
13秒前
wanghao完成签到,获得积分20
13秒前
善学以致用应助songjiatian采纳,获得10
14秒前
15秒前
15秒前
善学以致用应助追忆淮采纳,获得10
16秒前
Hello应助靓丽凝海采纳,获得10
16秒前
16秒前
毛笑冉完成签到,获得积分10
16秒前
fine发布了新的文献求助10
16秒前
17秒前
无辜问玉完成签到,获得积分10
18秒前
18秒前
CodeCraft应助SJW采纳,获得10
19秒前
指尖的阿里阿德涅完成签到,获得积分10
19秒前
July完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425