A graphics-accelerated deep neural network approach for turbomachinery flows based on large eddy simulation

涡轮机械 物理 图形处理单元 湍流 涡流 轴流压缩机 自编码 大涡模拟 卷积神经网络 流量(数学) 涡度 计算流体力学 流动可视化 人工神经网络 计算机科学 人工智能 计算科学 机械 气体压缩机 并行计算 热力学
作者
Zheming Tong,Jiage Xin,Jiaying Song,Xiangkun Elvis Cao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (9) 被引量:2
标识
DOI:10.1063/5.0160968
摘要

In turbomachinery, strongly unsteady rotor–stator interaction triggers complex three-dimensional turbulent flow phenomena such as flow separation and vortex dynamics. Large eddy simulation (LES) is an advanced numerical method that has recently been used to resolve large-scale turbulent motions and model subgrid-scale turbulence in turbomachinery. To largely reduce the computing cost of LES for turbomachinery flow, a graphics processing unit (GPU)-accelerated deep neural network-based flow field prediction approach is explored, which combines convolutional neural network autoencoder (CNN-AE) with long short-term memory (LSTM). CNN-AE extracts spatial features of turbomachinery flow by mapping high-dimensional flow fields into low-dimensional space, while LSTM is used to predict the temporal evolution of fluid dynamics. Automatic mixed precision (AMP) is employed to achieve rapid neural network training using Nvidia GTX 1080 Ti GPU, which shows a significant speedup compared with that without AMP. We evaluated the proposed CNN-AE-LSTM (CAL) method against gated recurrent units (GRU) and simple recurrent network (SRN) on two types of turbomachinery, i.e., centrifugal and axial flow pumps. The results show that the proposed CAL shows better capability of capturing the vortex structure details of turbomachinery. When predicting the temporal vorticity field, the mean square error of CAL results is 0.105%–0.124% for centrifugal pumps and 0.071%–0.072% for axial flow pumps. Meanwhile, the structural similarity index measure of the CAL results is 92.51%–92.77% for centrifugal pumps and 93.81%–94.61% for axial flow pumps. The proposed CAL is noticeably better than GRU and SRN in terms of both mean square error and structural similarity index measure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苌枫发布了新的文献求助10
刚刚
火星上雁枫应助smoli采纳,获得20
刚刚
alveraze发布了新的文献求助10
刚刚
Infinity完成签到,获得积分10
1秒前
1秒前
科研蛋完成签到,获得积分10
1秒前
2秒前
猫尔儿发布了新的文献求助10
2秒前
深情的保温杯完成签到,获得积分20
3秒前
心灵美的虔纹完成签到,获得积分10
3秒前
4秒前
4秒前
细心天德完成签到,获得积分10
4秒前
研友_nEWrN8完成签到,获得积分10
4秒前
小珂完成签到,获得积分10
4秒前
一一发布了新的文献求助10
5秒前
鳄鱼完成签到,获得积分0
6秒前
尹辉发布了新的文献求助10
6秒前
GGY发布了新的文献求助30
6秒前
6秒前
稳重大米发布了新的文献求助10
6秒前
6秒前
思源应助默默的恶天采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
泡沫完成签到,获得积分10
8秒前
zxdw完成签到,获得积分10
8秒前
yinhe028完成签到,获得积分10
8秒前
5km完成签到,获得积分10
8秒前
9秒前
doudou完成签到,获得积分10
10秒前
11秒前
就不吃苹果完成签到,获得积分10
11秒前
明天吖在吗完成签到,获得积分10
11秒前
12秒前
完美世界应助米月采纳,获得10
13秒前
13秒前
浮云应助Honahlee采纳,获得20
13秒前
Orange应助落后的初露采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665433
求助须知:如何正确求助?哪些是违规求助? 4876596
关于积分的说明 15113729
捐赠科研通 4824584
什么是DOI,文献DOI怎么找? 2582801
邀请新用户注册赠送积分活动 1536780
关于科研通互助平台的介绍 1495335