A graphics-accelerated deep neural network approach for turbomachinery flows based on large eddy simulation

涡轮机械 物理 图形处理单元 湍流 涡流 轴流压缩机 自编码 大涡模拟 卷积神经网络 流量(数学) 涡度 计算流体力学 流动可视化 人工神经网络 计算机科学 人工智能 计算科学 机械 气体压缩机 并行计算 热力学
作者
Zheming Tong,Jiage Xin,Jiaying Song,Xiangkun Elvis Cao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (9) 被引量:2
标识
DOI:10.1063/5.0160968
摘要

In turbomachinery, strongly unsteady rotor–stator interaction triggers complex three-dimensional turbulent flow phenomena such as flow separation and vortex dynamics. Large eddy simulation (LES) is an advanced numerical method that has recently been used to resolve large-scale turbulent motions and model subgrid-scale turbulence in turbomachinery. To largely reduce the computing cost of LES for turbomachinery flow, a graphics processing unit (GPU)-accelerated deep neural network-based flow field prediction approach is explored, which combines convolutional neural network autoencoder (CNN-AE) with long short-term memory (LSTM). CNN-AE extracts spatial features of turbomachinery flow by mapping high-dimensional flow fields into low-dimensional space, while LSTM is used to predict the temporal evolution of fluid dynamics. Automatic mixed precision (AMP) is employed to achieve rapid neural network training using Nvidia GTX 1080 Ti GPU, which shows a significant speedup compared with that without AMP. We evaluated the proposed CNN-AE-LSTM (CAL) method against gated recurrent units (GRU) and simple recurrent network (SRN) on two types of turbomachinery, i.e., centrifugal and axial flow pumps. The results show that the proposed CAL shows better capability of capturing the vortex structure details of turbomachinery. When predicting the temporal vorticity field, the mean square error of CAL results is 0.105%–0.124% for centrifugal pumps and 0.071%–0.072% for axial flow pumps. Meanwhile, the structural similarity index measure of the CAL results is 92.51%–92.77% for centrifugal pumps and 93.81%–94.61% for axial flow pumps. The proposed CAL is noticeably better than GRU and SRN in terms of both mean square error and structural similarity index measure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故意的冰淇淋完成签到 ,获得积分10
刚刚
刚刚
远方完成签到,获得积分10
1秒前
kiminonawa完成签到,获得积分0
2秒前
zrz完成签到,获得积分10
2秒前
3秒前
传奇3应助morlison采纳,获得10
3秒前
6秒前
6秒前
7秒前
8秒前
乐呀完成签到,获得积分10
8秒前
木头人呐完成签到 ,获得积分10
8秒前
小马甲应助吴岳采纳,获得10
8秒前
天天向上赶完成签到,获得积分10
8秒前
整齐的凡梦完成签到,获得积分10
9秒前
孙冉冉发布了新的文献求助10
10秒前
MHB应助towerman采纳,获得10
11秒前
Dean发布了新的文献求助10
11秒前
12秒前
加油加油发布了新的文献求助10
12秒前
lili完成签到 ,获得积分10
13秒前
文剑武书生完成签到,获得积分10
14秒前
科研通AI5应助无限鞅采纳,获得10
14秒前
14秒前
852应助木棉采纳,获得10
14秒前
15秒前
卓哥完成签到,获得积分10
16秒前
17秒前
Agan发布了新的文献求助10
17秒前
17秒前
18秒前
morlison发布了新的文献求助10
18秒前
科研通AI5应助金色年华采纳,获得10
20秒前
充电宝应助kh453采纳,获得10
20秒前
正经俠发布了新的文献求助10
20秒前
一衣发布了新的文献求助20
21秒前
可爱的函函应助药学牛马采纳,获得10
21秒前
XM发布了新的文献求助10
21秒前
专注之双完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808