A graphics-accelerated deep neural network approach for turbomachinery flows based on large eddy simulation

涡轮机械 物理 图形处理单元 湍流 涡流 轴流压缩机 自编码 大涡模拟 卷积神经网络 流量(数学) 涡度 计算流体力学 流动可视化 人工神经网络 计算机科学 人工智能 计算科学 机械 气体压缩机 并行计算 热力学
作者
Zheming Tong,Jiage Xin,Jiaying Song,Xiangkun Elvis Cao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (9) 被引量:2
标识
DOI:10.1063/5.0160968
摘要

In turbomachinery, strongly unsteady rotor–stator interaction triggers complex three-dimensional turbulent flow phenomena such as flow separation and vortex dynamics. Large eddy simulation (LES) is an advanced numerical method that has recently been used to resolve large-scale turbulent motions and model subgrid-scale turbulence in turbomachinery. To largely reduce the computing cost of LES for turbomachinery flow, a graphics processing unit (GPU)-accelerated deep neural network-based flow field prediction approach is explored, which combines convolutional neural network autoencoder (CNN-AE) with long short-term memory (LSTM). CNN-AE extracts spatial features of turbomachinery flow by mapping high-dimensional flow fields into low-dimensional space, while LSTM is used to predict the temporal evolution of fluid dynamics. Automatic mixed precision (AMP) is employed to achieve rapid neural network training using Nvidia GTX 1080 Ti GPU, which shows a significant speedup compared with that without AMP. We evaluated the proposed CNN-AE-LSTM (CAL) method against gated recurrent units (GRU) and simple recurrent network (SRN) on two types of turbomachinery, i.e., centrifugal and axial flow pumps. The results show that the proposed CAL shows better capability of capturing the vortex structure details of turbomachinery. When predicting the temporal vorticity field, the mean square error of CAL results is 0.105%–0.124% for centrifugal pumps and 0.071%–0.072% for axial flow pumps. Meanwhile, the structural similarity index measure of the CAL results is 92.51%–92.77% for centrifugal pumps and 93.81%–94.61% for axial flow pumps. The proposed CAL is noticeably better than GRU and SRN in terms of both mean square error and structural similarity index measure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYNB完成签到 ,获得积分10
2秒前
收声发布了新的文献求助10
2秒前
科目三应助屠夫9441采纳,获得10
2秒前
hao完成签到,获得积分10
2秒前
JJ发布了新的文献求助10
3秒前
包容店员完成签到 ,获得积分10
3秒前
3秒前
虚幻的璟完成签到,获得积分10
4秒前
兜有米发布了新的文献求助10
5秒前
无花果应助失眠双双采纳,获得10
5秒前
无花果应助说明书采纳,获得10
6秒前
852应助枕安采纳,获得10
6秒前
6秒前
7秒前
宾师傅完成签到 ,获得积分10
9秒前
9秒前
SciGPT应助沙力VAN采纳,获得10
9秒前
9秒前
9秒前
小二郎应助minima1998采纳,获得30
10秒前
Nakacoke77完成签到,获得积分10
10秒前
monned发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
HHHH完成签到,获得积分10
11秒前
SciGPT应助金鱼的眼泪采纳,获得10
11秒前
疯狂飞跃完成签到,获得积分10
11秒前
Mike完成签到,获得积分10
12秒前
chencchen完成签到,获得积分10
12秒前
细腻的以寒完成签到,获得积分10
12秒前
yyy关注了科研通微信公众号
12秒前
12秒前
tooty发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
科研包完成签到,获得积分10
13秒前
CC发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558727
求助须知:如何正确求助?哪些是违规求助? 3985597
关于积分的说明 12339453
捐赠科研通 3656084
什么是DOI,文献DOI怎么找? 2014170
邀请新用户注册赠送积分活动 1048980
科研通“疑难数据库(出版商)”最低求助积分说明 937375