A graphics-accelerated deep neural network approach for turbomachinery flows based on large eddy simulation

涡轮机械 物理 图形处理单元 湍流 涡流 轴流压缩机 自编码 大涡模拟 卷积神经网络 流量(数学) 涡度 计算流体力学 流动可视化 人工神经网络 计算机科学 人工智能 计算科学 机械 气体压缩机 并行计算 热力学
作者
Zheming Tong,Jiage Xin,Jiaying Song,Xiangkun Elvis Cao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (9) 被引量:2
标识
DOI:10.1063/5.0160968
摘要

In turbomachinery, strongly unsteady rotor–stator interaction triggers complex three-dimensional turbulent flow phenomena such as flow separation and vortex dynamics. Large eddy simulation (LES) is an advanced numerical method that has recently been used to resolve large-scale turbulent motions and model subgrid-scale turbulence in turbomachinery. To largely reduce the computing cost of LES for turbomachinery flow, a graphics processing unit (GPU)-accelerated deep neural network-based flow field prediction approach is explored, which combines convolutional neural network autoencoder (CNN-AE) with long short-term memory (LSTM). CNN-AE extracts spatial features of turbomachinery flow by mapping high-dimensional flow fields into low-dimensional space, while LSTM is used to predict the temporal evolution of fluid dynamics. Automatic mixed precision (AMP) is employed to achieve rapid neural network training using Nvidia GTX 1080 Ti GPU, which shows a significant speedup compared with that without AMP. We evaluated the proposed CNN-AE-LSTM (CAL) method against gated recurrent units (GRU) and simple recurrent network (SRN) on two types of turbomachinery, i.e., centrifugal and axial flow pumps. The results show that the proposed CAL shows better capability of capturing the vortex structure details of turbomachinery. When predicting the temporal vorticity field, the mean square error of CAL results is 0.105%–0.124% for centrifugal pumps and 0.071%–0.072% for axial flow pumps. Meanwhile, the structural similarity index measure of the CAL results is 92.51%–92.77% for centrifugal pumps and 93.81%–94.61% for axial flow pumps. The proposed CAL is noticeably better than GRU and SRN in terms of both mean square error and structural similarity index measure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦发布了新的文献求助10
1秒前
1秒前
tengfei完成签到 ,获得积分10
1秒前
1秒前
ggyybb完成签到 ,获得积分10
2秒前
NexusExplorer应助Zkxxxx采纳,获得10
2秒前
月上柳梢头完成签到 ,获得积分10
2秒前
灵巧蓉完成签到,获得积分10
2秒前
苏silence发布了新的文献求助10
2秒前
1101592875完成签到,获得积分10
2秒前
土豆你个西红柿完成签到 ,获得积分10
3秒前
慢慢来完成签到 ,获得积分10
3秒前
XD发布了新的文献求助10
4秒前
内向含桃发布了新的文献求助10
4秒前
福尔摩曦完成签到,获得积分10
4秒前
Ayin完成签到,获得积分10
5秒前
5秒前
畅快代玉发布了新的文献求助10
5秒前
活泼的蘑菇完成签到 ,获得积分10
5秒前
文静的觅海完成签到,获得积分10
5秒前
新星完成签到,获得积分10
6秒前
折耳根拌香菜完成签到,获得积分10
7秒前
qiuxiali123发布了新的文献求助10
7秒前
7秒前
无昵称完成签到,获得积分10
7秒前
深情安青应助俭朴远望采纳,获得10
7秒前
Hello应助yqsf789采纳,获得10
7秒前
7秒前
8秒前
静槐完成签到,获得积分10
8秒前
搜集达人应助woaikeyan采纳,获得60
9秒前
9秒前
9秒前
无极微光应助季宇采纳,获得20
9秒前
miao发布了新的文献求助20
10秒前
10秒前
10秒前
Clarence完成签到,获得积分10
11秒前
静槐发布了新的文献求助10
11秒前
jessicazhong完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017