A graphics-accelerated deep neural network approach for turbomachinery flows based on large eddy simulation

涡轮机械 物理 图形处理单元 湍流 涡流 轴流压缩机 自编码 大涡模拟 卷积神经网络 流量(数学) 涡度 计算流体力学 流动可视化 人工神经网络 计算机科学 人工智能 计算科学 机械 气体压缩机 并行计算 热力学
作者
Zheming Tong,Jiage Xin,Jiaying Song,Xiangkun Elvis Cao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (9) 被引量:2
标识
DOI:10.1063/5.0160968
摘要

In turbomachinery, strongly unsteady rotor–stator interaction triggers complex three-dimensional turbulent flow phenomena such as flow separation and vortex dynamics. Large eddy simulation (LES) is an advanced numerical method that has recently been used to resolve large-scale turbulent motions and model subgrid-scale turbulence in turbomachinery. To largely reduce the computing cost of LES for turbomachinery flow, a graphics processing unit (GPU)-accelerated deep neural network-based flow field prediction approach is explored, which combines convolutional neural network autoencoder (CNN-AE) with long short-term memory (LSTM). CNN-AE extracts spatial features of turbomachinery flow by mapping high-dimensional flow fields into low-dimensional space, while LSTM is used to predict the temporal evolution of fluid dynamics. Automatic mixed precision (AMP) is employed to achieve rapid neural network training using Nvidia GTX 1080 Ti GPU, which shows a significant speedup compared with that without AMP. We evaluated the proposed CNN-AE-LSTM (CAL) method against gated recurrent units (GRU) and simple recurrent network (SRN) on two types of turbomachinery, i.e., centrifugal and axial flow pumps. The results show that the proposed CAL shows better capability of capturing the vortex structure details of turbomachinery. When predicting the temporal vorticity field, the mean square error of CAL results is 0.105%–0.124% for centrifugal pumps and 0.071%–0.072% for axial flow pumps. Meanwhile, the structural similarity index measure of the CAL results is 92.51%–92.77% for centrifugal pumps and 93.81%–94.61% for axial flow pumps. The proposed CAL is noticeably better than GRU and SRN in terms of both mean square error and structural similarity index measure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助诸葛晴天采纳,获得10
1秒前
1秒前
研友_LX6AoZ发布了新的文献求助30
1秒前
1秒前
嘀嘀菇菇完成签到 ,获得积分10
1秒前
orixero应助最大的毛虫采纳,获得10
1秒前
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
zz完成签到,获得积分10
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
聪仔应助科研通管家采纳,获得30
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Wanfeng应助科研通管家采纳,获得20
3秒前
xjcy应助科研通管家采纳,获得10
3秒前
festum完成签到,获得积分10
3秒前
3秒前
Jane发布了新的文献求助10
3秒前
4秒前
lshl2000发布了新的文献求助10
4秒前
单于思雁发布了新的文献求助20
4秒前
Dandelion完成签到,获得积分10
5秒前
柒玥完成签到,获得积分10
5秒前
森诺完成签到 ,获得积分10
5秒前
小崔完成签到,获得积分20
6秒前
6秒前
畅快完成签到,获得积分10
7秒前
7秒前
7秒前
斯文谷秋发布了新的文献求助100
7秒前
7秒前
自私的猫发布了新的文献求助10
8秒前
wanci应助asukazl采纳,获得10
8秒前
柒玥发布了新的文献求助10
8秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217557
求助须知:如何正确求助?哪些是违规求助? 2866772
关于积分的说明 8153476
捐赠科研通 2533694
什么是DOI,文献DOI怎么找? 1366407
科研通“疑难数据库(出版商)”最低求助积分说明 644764
邀请新用户注册赠送积分活动 617731