草原
初级生产
环境科学
累积效应
生态系统
生产力
滞后
气候变化
自然地理学
生态学
地理
生物
计算机网络
计算机科学
经济
宏观经济学
作者
Liang Liu,Jingyun Guan,Jianghua Zheng,Yongdong Wang,Wanqiang Han,Yujia Liu
标识
DOI:10.1016/j.jenvman.2023.118734
摘要
Global warming has exacerbated the threat of drought in Central Asia, amplifying its ecological implications within the region's grassland ecosystems. This has become an increasingly prominent issue that requires attention and action. The temporal link between grassland development and drought is asymmetric. However, a quantitative assessment of the temporal effects of multiscale drought on Central Asian grasslands has yet to be explored. Based on correlation analysis and the coefficient of variation method, this study analysed the cumulative and lag effects of multitimescale drought on grassland NPP (net primary productivity) under different climatic zones, altitudes and water availabilities in Central Asia from 1982 to 2018, and discussed the impact of temporal effects on grassland NPP stability. Our results on the cumulative effects of drought on grasslands indicate the 6.72 months preceding NPP measurement was the duration for which, on average, drought was most strongly correlated with NPP. Additionally, we found a mean lagged effect of 5.36 months, meaning that the monthly drought 5.36 months prior to NPP measurement was, on average, most strongly correlated with NPP. The degree to which grassland NPP was affected by cumulative drought at a given level of water availability was inversely proportional to the number of cumulative drought months. Under different water availabilities, the lagged effect of grassland NPP was stronger in dry areas than in wet areas, and the number of lag months tended to decrease and then increase as the water availability increased. The percentage of areas where grassland NPP was dominated by the cumulative and lagging effects of drought was 30.02% and 69.98%, respectively. The stability of grassland NPP was adversely affected by the drought accumulation effect. The findings of this study contribute to a deeper understanding of the long-term effects of drought on grassland ecosystems. Additionally, it will aid in the development of strategies for mitigating and adapting to drought events, thereby minimizing their negative impacts on agriculture, livestock, and ecosystems.
科研通智能强力驱动
Strongly Powered by AbleSci AI