mmDrive: Fine-grained Fatigue Driving Detection Using mmWave Radar

计算机科学 特征(语言学) 心跳 可穿戴计算机 干扰(通信) 人工智能 实时计算 雷达 信号(编程语言) 计算机视觉 模式识别(心理学) 模拟 嵌入式系统 电信 哲学 语言学 频道(广播) 计算机安全 程序设计语言
作者
Juncen Zhu,Jiannong Cao,Yanni Yang,Wei Ren,Huizi Han
出处
期刊:ACM transactions on the internet of things [Association for Computing Machinery]
卷期号:4 (4): 1-30 被引量:6
标识
DOI:10.1145/3614437
摘要

Early detection of fatigue driving is pivotal for the safety of drivers and pedestrians. Traditional approaches mainly employ cameras and wearable sensors to detect fatigue features, which are intrusive to drivers. Recent advances in radio frequency (RF) sensing enable non-intrusive fatigue feature detection from the signal reflected by driver's body. However, existing RF-based solutions only detect partial or coarse-grained fatigue features, which reduces the detection accuracy. To tackle the above limitations, we propose a mmWave-based fatigue driving detection system, called mmDrive, which can detect multiple fine-grained fatigue features from different body parts. However, achieving accurate detection of various fatigue features during driving encounters practical challenges. Specifically, normal driving activities and driver's involuntary facial movements inevitably cause interference to fatigue features. Thus, we exploit unique geometric and behavioral characteristics of fatigue features and design effective signal processing methods to remove noises from fatigue-irrelevant activities. Based on the detected fatigue features, we further develop a fatigue determination algorithm to decide the driver's fatigue state. Extensive experiment results from both simulated and real driving environments show that the average accuracy for detecting nodding and yawning features is about 96%, and the average errors for estimating eye blink, respiration, and heartbeat rates are around 2.21 bpm, 0.54 bpm, and 2.52 bpm, respectively. And the accuracy of the fatigue detection algorithm we proposed reached 97.63%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糯米团子完成签到,获得积分10
1秒前
1秒前
1秒前
00000000发布了新的文献求助10
4秒前
4秒前
6秒前
dy完成签到,获得积分10
7秒前
菜菜羊发布了新的文献求助10
8秒前
领导范儿应助南宫盼秋采纳,获得10
8秒前
8秒前
taotao完成签到,获得积分10
8秒前
风中的傲安完成签到,获得积分10
9秒前
孙不缺完成签到,获得积分10
9秒前
10秒前
Pretrial完成签到 ,获得积分10
10秒前
CC完成签到,获得积分10
11秒前
阳光的道消完成签到,获得积分10
11秒前
12秒前
所所应助平淡的访风采纳,获得30
12秒前
123完成签到,获得积分10
12秒前
科研通AI2S应助研友_n0DWDn采纳,获得10
13秒前
牟潦草完成签到,获得积分10
13秒前
Lina发布了新的文献求助10
15秒前
15秒前
cdercder应助yyds采纳,获得10
15秒前
酷波er应助马越采纳,获得30
15秒前
16秒前
zx_wei完成签到,获得积分10
16秒前
16秒前
123发布了新的文献求助20
16秒前
bleem完成签到,获得积分10
17秒前
无患子完成签到,获得积分10
18秒前
超级的长颈鹿完成签到,获得积分10
18秒前
上官完成签到 ,获得积分10
18秒前
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
竹筏过海应助科研通管家采纳,获得30
19秒前
斯文败类应助甜美雪兰采纳,获得10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743656
求助须知:如何正确求助?哪些是违规求助? 3286166
关于积分的说明 10049679
捐赠科研通 3002824
什么是DOI,文献DOI怎么找? 1648499
邀请新用户注册赠送积分活动 784661
科研通“疑难数据库(出版商)”最低求助积分说明 750787