Multi-View Diffusion Process for Spectral Clustering and Image Retrieval

计算机科学 图形 人工智能 成对比较 聚类分析 机器学习 光谱聚类 图像检索 理论计算机科学 模式识别(心理学) 图像(数学)
作者
Qilin Li,Senjian An,Ling Li,Wanquan Liu,Yanda Shao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 4610-4620 被引量:8
标识
DOI:10.1109/tip.2023.3302517
摘要

This paper presents a novel approach to multi-view graph learning that combines weight learning and graph learning in an alternating optimization framework. Multi-view graph learning refers to the problem of constructing a unified affinity graph using heterogeneous sources of data representation, which is a popular technique in many learning systems where no prior knowledge of data distribution is available. Our approach is based on a fusion-and-diffusion strategy, in which multiple affinity graphs are fused together via a weight learning scheme based on the unsupervised graph smoothness and utilised as a consensus prior to the diffusion. We propose a novel multi-view diffusion process that learns a manifold-aware affinity graph by propagating affinities on tensor product graphs, leveraging high-order contextual information to enhance pairwise affinities. In contrast to existing multi-view graph learning approaches, our approach is not limited by the quality of initial graphs or the assumption of a latent common subspace among multiple views. Instead, our approach is able to identify the consistency among views and fuse multiple graphs adaptively. We formulate both weight learning and diffusion-based affinity learning in a unified framework and propose an alternating optimization solver that is guaranteed to converge. The proposed approach is applied to image retrieval and clustering tasks on 16 real-world datasets. Extensive experimental results demonstrate that our approach outperforms state-of-the-art methods for both retrieval and clustering on 13 out of 16 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助叶小文采纳,获得10
刚刚
cyn0762发布了新的文献求助10
1秒前
2秒前
spyspy完成签到,获得积分10
2秒前
林佳一完成签到,获得积分10
4秒前
城南烤地瓜完成签到 ,获得积分10
4秒前
5秒前
等等完成签到 ,获得积分10
7秒前
wanci应助mzc采纳,获得10
7秒前
一条咸鱼发布了新的文献求助10
7秒前
9秒前
某只兔子完成签到,获得积分10
10秒前
大模型应助一条咸鱼采纳,获得10
11秒前
行路人发布了新的文献求助20
11秒前
阿航完成签到,获得积分10
11秒前
11秒前
13秒前
13秒前
13秒前
科研通AI5应助科研混子采纳,获得10
14秒前
英俊的铭应助欧阳正义采纳,获得10
15秒前
15秒前
Chris发布了新的文献求助10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
柯一一应助科研通管家采纳,获得10
16秒前
16秒前
Orange应助科研通管家采纳,获得10
16秒前
mmyhn应助科研通管家采纳,获得20
17秒前
iNk应助科研通管家采纳,获得20
17秒前
Liufgui应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
Liufgui应助科研通管家采纳,获得10
17秒前
ccc发布了新的文献求助10
17秒前
酷波er应助积极的夜香采纳,获得80
17秒前
Liufgui应助科研通管家采纳,获得10
17秒前
柯一一应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
霸气的猎豹完成签到,获得积分10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498