Multi-View Diffusion Process for Spectral Clustering and Image Retrieval

计算机科学 图形 人工智能 成对比较 聚类分析 机器学习 光谱聚类 图像检索 理论计算机科学 模式识别(心理学) 图像(数学)
作者
Qilin Li,Senjian An,Ling Li,Wanquan Liu,Yanda Shao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 4610-4620 被引量:8
标识
DOI:10.1109/tip.2023.3302517
摘要

This paper presents a novel approach to multi-view graph learning that combines weight learning and graph learning in an alternating optimization framework. Multi-view graph learning refers to the problem of constructing a unified affinity graph using heterogeneous sources of data representation, which is a popular technique in many learning systems where no prior knowledge of data distribution is available. Our approach is based on a fusion-and-diffusion strategy, in which multiple affinity graphs are fused together via a weight learning scheme based on the unsupervised graph smoothness and utilised as a consensus prior to the diffusion. We propose a novel multi-view diffusion process that learns a manifold-aware affinity graph by propagating affinities on tensor product graphs, leveraging high-order contextual information to enhance pairwise affinities. In contrast to existing multi-view graph learning approaches, our approach is not limited by the quality of initial graphs or the assumption of a latent common subspace among multiple views. Instead, our approach is able to identify the consistency among views and fuse multiple graphs adaptively. We formulate both weight learning and diffusion-based affinity learning in a unified framework and propose an alternating optimization solver that is guaranteed to converge. The proposed approach is applied to image retrieval and clustering tasks on 16 real-world datasets. Extensive experimental results demonstrate that our approach outperforms state-of-the-art methods for both retrieval and clustering on 13 out of 16 datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助宋垚采纳,获得10
1秒前
1秒前
快乐薯条发布了新的文献求助30
1秒前
2秒前
zhu完成签到,获得积分10
2秒前
wanci应助儒雅沛蓝采纳,获得10
2秒前
Syato应助赵八九采纳,获得10
2秒前
ll完成签到,获得积分10
2秒前
一行琉璃发布了新的文献求助10
2秒前
nwds完成签到,获得积分10
3秒前
jingzhe发布了新的文献求助10
3秒前
大个应助zhihui采纳,获得10
4秒前
4秒前
4秒前
钟佳芸发布了新的文献求助10
4秒前
坚定青烟发布了新的文献求助10
4秒前
乐乐应助霸气乌冬面采纳,获得10
5秒前
shuziyuan关注了科研通微信公众号
5秒前
wangli发布了新的文献求助10
5秒前
zerro发布了新的文献求助10
5秒前
隐形曼青应助xjdb123采纳,获得10
6秒前
朱颖发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
熙辞辞发布了新的文献求助10
6秒前
6秒前
6秒前
雪白以冬完成签到 ,获得积分10
6秒前
流年勿空完成签到,获得积分20
7秒前
咕咕咕发布了新的文献求助10
7秒前
7秒前
Amorphous发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
EatFish完成签到,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512216
求助须知:如何正确求助?哪些是违规求助? 4606600
关于积分的说明 14500450
捐赠科研通 4542054
什么是DOI,文献DOI怎么找? 2488803
邀请新用户注册赠送积分活动 1470901
关于科研通互助平台的介绍 1443089