A Machine Learning Model Demonstrates Excellent Performance in Predicting Subscapularis Tears Based on Pre-Operative Imaging Parameters Alone

医学 眼泪 外科
作者
Jacob F. Oeding,Ayoosh Pareek,Micah J. Nieboer,Nicholas G. Rhodes,Christin A. Tiegs‐Heiden,Christopher L. Camp,R. Kyle Martin,Gilbert Moatshe,Lars Engebretsen,Joaquín Sánchez‐Sotelo
出处
期刊:Arthroscopy [Elsevier]
卷期号:40 (4): 1044-1055 被引量:6
标识
DOI:10.1016/j.arthro.2023.08.084
摘要

To develop a machine learning model capable of identifying subscapularis tears before surgery based on imaging and physical examination findings.Between 2010 and 2020, 202 consecutive shoulders underwent arthroscopic rotator cuff repair by a single surgeon. Patient demographics, physical examination findings (including range of motion, weakness with internal rotation, lift/push-off test, belly press test, and bear hug test), and imaging (including direct and indirect signs of tearing, biceps status, fatty atrophy, cystic changes, and other similar findings) were included for model creation.Sixty percent of the shoulders had partial or full thickness tears of the subscapularis verified during surgery (83% of these were upper third). Using only preoperative imaging-related parameters, the XGBoost model demonstrated excellent performance at predicting subscapularis tears (c-statistic, 0.84; accuracy, 0.85; F1 score, 0.87). The top 5 features included direct signs related to the presence of tearing as evidenced on magnetic resonance imaging (MRI) (changes in tendon morphology and signal), as well as the quality of the MRI and biceps pathology.In this study, machine learning was successful in predicting subscapularis tears by MRI alone in 85% of patients, and this accuracy did not decrease by isolating the model to the top features. The top five features included direct signs related to the presence of tearing as evidenced on MRI (changes in tendon morphology and signal), as well as the quality of the MRI and biceps pathology. Last, in advanced modeling, the addition of physical examination or patient characteristics did not make a significant difference in the predictive ability of this model.Level III, diagnostic case-control study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HN洪发布了新的文献求助10
刚刚
刚刚
1秒前
科研通AI5应助echo采纳,获得10
1秒前
香蕉觅云应助Fancy采纳,获得10
2秒前
勤奋幻天完成签到 ,获得积分10
2秒前
big张发布了新的文献求助10
2秒前
dyd发布了新的文献求助10
2秒前
3秒前
科研通AI5应助忧郁老头采纳,获得10
4秒前
Donnan关注了科研通微信公众号
4秒前
千宝发布了新的文献求助10
4秒前
4秒前
慕青应助big张采纳,获得10
5秒前
意意完成签到,获得积分10
5秒前
SciGPT应助ZZH采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
lumei661314发布了新的文献求助10
7秒前
文章快快来应助zz采纳,获得10
8秒前
8秒前
mimianuo完成签到 ,获得积分10
9秒前
10秒前
11秒前
echo发布了新的文献求助10
11秒前
11秒前
科研谢啦发布了新的文献求助10
12秒前
皮崇知发布了新的文献求助10
12秒前
kwq发布了新的文献求助10
15秒前
16秒前
彭于晏应助季末默相依采纳,获得10
17秒前
momo完成签到,获得积分10
19秒前
忧郁老头发布了新的文献求助10
19秒前
19秒前
仁爱太阳完成签到,获得积分10
20秒前
啊莲完成签到,获得积分10
20秒前
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554712
求助须知:如何正确求助?哪些是违规求助? 3130546
关于积分的说明 9387446
捐赠科研通 2829867
什么是DOI,文献DOI怎么找? 1555725
邀请新用户注册赠送积分活动 726278
科研通“疑难数据库(出版商)”最低求助积分说明 715542