已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Two-Stage Denoising Diffusion Model for Source Localization in Graph Inverse Problems

计算机科学 反问题 趋同(经济学) 数学优化 图形 反向 降噪 扩散过程 人工智能 理论计算机科学 算法 数学 数学分析 几何学 知识管理 创新扩散 经济 经济增长
作者
Bosong Huang,Weihao Yu,Ruzhong Xie,Jing Xiao,Jin Huang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 325-340 被引量:1
标识
DOI:10.1007/978-3-031-43418-1_20
摘要

Source localization is the inverse problem of graph information dissemination (information diffusion) and has broad practical applications. However, the inherent intricacy and uncertainty in information dissemination pose significant challenges, and the ill-posed nature of the source localization problem further exacerbates these challenges. Recently, deep generative models, particularly diffusion models inspired by classical non-equilibrium thermodynamics, have made significant progress. While diffusion models have proven to be powerful in solving inverse problems and producing high-quality reconstructions, applying them directly to the source localization problem is infeasible for two reasons. Firstly, it is impossible to calculate the posterior disseminated results on a large-scale network for iterative denoising sampling, which would incur enormous computational costs. Secondly, in the existing methods designed for this field, the training data itself are ill-posed (many-to-one); thus simply transferring the diffusion model would only lead to local optima. To address these challenges, we propose a two-stage optimization framework, the source localization denoising diffusion model (SL-Diff). In the coarse stage, we devise the source proximity degrees as the supervised signals to generate coarse-grained source predictions. This aims to efficiently initialize the next stage, significantly reducing its convergence time and calibrating the convergence process. Furthermore, the introduction of cascade temporal information in this training method transforms the many-to-one mapping relationship into a one-to-one relationship, perfectly addressing the ill-posed problem. In the fine stage, we design a diffusion model for the graph inverse problem that can quantify the uncertainty in the dissemination process. Thanks to the excellent collaboration of the two stages, the proposed SL-Diff yields excellent prediction results within a reasonable sampling time, as demonstrated in extensive experiments on five datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
胖虎啊发布了新的文献求助10
2秒前
3秒前
3秒前
荔枝荔枝完成签到,获得积分10
5秒前
5秒前
胖虎啊完成签到,获得积分10
8秒前
11秒前
晚风发布了新的文献求助30
11秒前
13秒前
郑帅哥完成签到 ,获得积分10
15秒前
请叫我风吹麦浪应助sanshui采纳,获得10
16秒前
邓力发布了新的文献求助10
17秒前
成成发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
22秒前
kklkimo完成签到,获得积分10
26秒前
29秒前
31秒前
xxxxx炒菜发布了新的文献求助10
32秒前
SCI完成签到,获得积分20
33秒前
平淡扬发布了新的文献求助10
37秒前
量子星尘发布了新的文献求助10
37秒前
42秒前
45秒前
yy_ren完成签到,获得积分10
48秒前
lwm不想看文献完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
50秒前
2213sss完成签到,获得积分10
53秒前
C9完成签到 ,获得积分10
54秒前
54秒前
Langsam完成签到,获得积分10
55秒前
55秒前
大个应助科研通管家采纳,获得10
57秒前
香蕉觅云应助科研通管家采纳,获得10
57秒前
丘比特应助科研通管家采纳,获得10
57秒前
57秒前
量子星尘发布了新的文献求助10
58秒前
奶油咩咩完成签到 ,获得积分10
58秒前
59秒前
愤怒的大开完成签到,获得积分10
59秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666285
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762711
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185