Gene selection with Game Shapley Harris hawks optimizer for cancer classification

特征选择 支持向量机 朴素贝叶斯分类器 计算机科学 人工智能 机器学习 分类器(UML) 数据挖掘 模式识别(心理学)
作者
Sana Afreen,Ajay Kumar Bhurjee,Rabia Musheer Aziz
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:242: 104989-104989 被引量:20
标识
DOI:10.1016/j.chemolab.2023.104989
摘要

Cancer disease has been classified as a perilous disease for humans, being the second leading cause of death globally. Even advanced-stage diagnosis may not be effective in preventing patient mortality. Therefore, it is important to establish a sustainable framework that predicts reliable estimates for an early cancer diagnosis. In this paper, a new two-phase feature (gene) selection approach is presented. In the first phase, the kernel Shapley value (kSV) that is based on the cooperative game-theoretic feature extraction approach is utilized to extract the important feature from the high dimensional gene expression data. In the second phase, Harris hawks optimizer (HHO) algorithm is utilized to further optimize the most effective feature extracted by kSV. Next, to evaluate the effectiveness of our proposed algorithm, we conduct extensive experiments on eight benchmark high-dimensional gene expression datasets, comparing them with other state-of-the-art techniques. We employ three classifiers, namely support vector machines (SVM), Naive Bayes (NB), and K-nearest neighbors (KNN), to assess the selected genes efficacy and their impact on classification accuracy. The experimental results demonstrate that the proposed method, particularly when combined with the SVM classifier, outperforms other gene selection methods. The evaluation metrics, including accuracy, precision, recall, F1-score, ROC-AUC, box plot, and radar plot, consistently indicate the superiority of kSV-HHO across all tested datasets. Moreover, the comparative and statistical analysis reveals that our proposed method excels in identifying the most relevant features for cancer diagnosis compared to other gene selection approaches. This makes our framework a valuable tool for cancer research and clinical practice, potentially enhancing the accuracy of early cancer diagnosis using high-dimensional gene expression biomedical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rjy完成签到 ,获得积分10
3秒前
性感母蟑螂完成签到 ,获得积分10
9秒前
ruochenzu完成签到,获得积分10
11秒前
陈尹蓝完成签到 ,获得积分10
12秒前
天道酬勤完成签到,获得积分10
14秒前
16秒前
仁爱的谷南完成签到,获得积分10
16秒前
雯雯完成签到 ,获得积分10
18秒前
一路有你完成签到 ,获得积分10
18秒前
19秒前
ruochenzu发布了新的文献求助10
19秒前
21秒前
wanghao完成签到 ,获得积分10
22秒前
图图发布了新的文献求助10
22秒前
十三完成签到 ,获得积分10
22秒前
聪慧芷巧完成签到,获得积分10
23秒前
米博士完成签到,获得积分10
24秒前
研友_VZGVzn完成签到,获得积分10
25秒前
Cheung2121发布了新的文献求助30
26秒前
黄芩完成签到 ,获得积分10
27秒前
44秒前
秋半梦完成签到,获得积分10
46秒前
李爱国应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
搜集达人应助科研通管家采纳,获得10
49秒前
打地鼠工人完成签到,获得积分10
50秒前
彩色半烟完成签到,获得积分10
52秒前
量子星尘发布了新的文献求助10
56秒前
Ning完成签到,获得积分10
59秒前
图图完成签到,获得积分10
59秒前
勤奋的灯完成签到 ,获得积分10
59秒前
ludong_0完成签到,获得积分10
59秒前
Asumita完成签到,获得积分10
1分钟前
双青豆完成签到 ,获得积分10
1分钟前
1分钟前
fxy完成签到 ,获得积分10
1分钟前
合适的幻然完成签到,获得积分10
1分钟前
沐雨汐完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022