Gene selection with Game Shapley Harris hawks optimizer for cancer classification

特征选择 支持向量机 朴素贝叶斯分类器 计算机科学 人工智能 机器学习 分类器(UML) 数据挖掘 模式识别(心理学)
作者
Sana Afreen,Ajay Kumar Bhurjee,Rabia Musheer Aziz
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:242: 104989-104989 被引量:20
标识
DOI:10.1016/j.chemolab.2023.104989
摘要

Cancer disease has been classified as a perilous disease for humans, being the second leading cause of death globally. Even advanced-stage diagnosis may not be effective in preventing patient mortality. Therefore, it is important to establish a sustainable framework that predicts reliable estimates for an early cancer diagnosis. In this paper, a new two-phase feature (gene) selection approach is presented. In the first phase, the kernel Shapley value (kSV) that is based on the cooperative game-theoretic feature extraction approach is utilized to extract the important feature from the high dimensional gene expression data. In the second phase, Harris hawks optimizer (HHO) algorithm is utilized to further optimize the most effective feature extracted by kSV. Next, to evaluate the effectiveness of our proposed algorithm, we conduct extensive experiments on eight benchmark high-dimensional gene expression datasets, comparing them with other state-of-the-art techniques. We employ three classifiers, namely support vector machines (SVM), Naive Bayes (NB), and K-nearest neighbors (KNN), to assess the selected genes efficacy and their impact on classification accuracy. The experimental results demonstrate that the proposed method, particularly when combined with the SVM classifier, outperforms other gene selection methods. The evaluation metrics, including accuracy, precision, recall, F1-score, ROC-AUC, box plot, and radar plot, consistently indicate the superiority of kSV-HHO across all tested datasets. Moreover, the comparative and statistical analysis reveals that our proposed method excels in identifying the most relevant features for cancer diagnosis compared to other gene selection approaches. This makes our framework a valuable tool for cancer research and clinical practice, potentially enhancing the accuracy of early cancer diagnosis using high-dimensional gene expression biomedical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BLock完成签到,获得积分10
1秒前
Zhaoyuemeng完成签到,获得积分10
1秒前
情怀应助Sophie的四月物语采纳,获得10
1秒前
2秒前
dounai完成签到,获得积分10
2秒前
jichups完成签到,获得积分10
3秒前
李超发布了新的文献求助10
3秒前
3秒前
时舒完成签到 ,获得积分10
4秒前
4秒前
浣熊小呆完成签到,获得积分10
4秒前
Marybaby完成签到,获得积分10
6秒前
Stars完成签到,获得积分10
6秒前
sunflower完成签到,获得积分10
7秒前
jjjjjjjj完成签到,获得积分0
7秒前
stop here完成签到,获得积分10
7秒前
左丘以云完成签到,获得积分10
8秒前
8秒前
可爱的觅夏完成签到,获得积分10
8秒前
宝宝完成签到 ,获得积分10
8秒前
Cresskil发布了新的文献求助30
9秒前
9秒前
9秒前
10秒前
菠菜发布了新的文献求助10
10秒前
11秒前
qiuer0011完成签到,获得积分10
11秒前
小小小完成签到,获得积分10
12秒前
动点子智慧完成签到,获得积分10
12秒前
13秒前
odell完成签到,获得积分10
13秒前
害羞的裘完成签到 ,获得积分10
13秒前
mj发布了新的文献求助10
14秒前
虚幻的海安完成签到,获得积分10
14秒前
碧蓝玉米发布了新的文献求助10
14秒前
呼噜完成签到,获得积分10
15秒前
ysy完成签到,获得积分10
15秒前
会飞的鱼完成签到,获得积分10
15秒前
16秒前
16秒前
高分求助中
Evolution 10000
CANCER DISCOVERY癌症研究的新前沿:中国科研领军人物的创新构想 中国专刊 500
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158693
求助须知:如何正确求助?哪些是违规求助? 2809927
关于积分的说明 7884596
捐赠科研通 2468681
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012