Social Media Images Can Predict Suicide Risk Using Interpretable Large Language-Vision Models

自杀学 人气 社会化媒体 人工智能 机器学习 计算机科学 毒物控制 自杀预防 逻辑回归 深度学习 心理学 社会心理学 医学 医疗急救 万维网
作者
Yael Badian,Yaakov Ophir,Refael Tikochinski,Nitay Calderon,Anat Brunstein Klomek,Eyal Fruchter,Roi Reichart
出处
期刊:The Journal of Clinical Psychiatry [Physicians Postgraduate Press, Inc.]
卷期号:85 (1) 被引量:6
标识
DOI:10.4088/jcp.23m14962
摘要

Background: Suicide, a leading cause of death and a major public health concern, became an even more pressing matter since the emergence of social media two decades ago and, more recently, following the hardships that characterized the COVID-19 crisis. Contemporary studies therefore aim to predict signs of suicide risk from social media using highly advanced artificial intelligence (AI) methods. Indeed, these new AI-based studies managed to break a longstanding prediction ceiling in suicidology; however, they still have principal limitations that prevent their implementation in real-life settings. These include "black box" methodologies, inadequate outcome measures, and scarce research on non-verbal inputs, such as images (despite their popularity today).Objective: This study aims to address these limitations and present an interpretable prediction model of clinically valid suicide risk from images.Methods: The data were extracted from a larger dataset from May through June 2018 that was used to predict suicide risk from textual postings. Specifically, the extracted data included a total of 177,220 images that were uploaded by 841 Facebook users who completed a gold-standard suicide scale. The images were represented with CLIP (Contrastive Language-Image Pre-training), a state-of-the-art deep-learning algorithm, which was utilized, unconventionally, to extract predefined interpretable features (eg, "photo of sad people") that served as inputs to a simple logistic regression model.Results: The results of this hybrid model that integrated theory-driven features with bottom-up methods indicated high prediction performance that surpassed common deep learning algorithms (area under the receiver operating characteristic curve [AUC] = 0.720, Cohen d = 0.82). Further analyses supported a theory-driven hypothesis that at-risk users would have images with increased negative emotions and decreased belongingness.Conclusions: This study provides a first proof that publicly available images can be leveraged to predict validated suicide risk. It also provides simple and flexible strategies that could enhance the development of real-life monitoring tools for suicide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
肥腩发布了新的文献求助10
刚刚
wsd发布了新的文献求助10
1秒前
腼腆的洪纲完成签到 ,获得积分10
1秒前
丘比特应助九品炼丹师采纳,获得10
2秒前
2秒前
3秒前
3秒前
你终硕完成签到 ,获得积分10
4秒前
4秒前
4秒前
维他命完成签到,获得积分10
5秒前
无限寄翠发布了新的文献求助10
5秒前
xiongyh10完成签到,获得积分10
6秒前
7秒前
7秒前
cxh发布了新的文献求助10
8秒前
JamesPei应助无限寄翠采纳,获得10
10秒前
123完成签到,获得积分10
11秒前
动漫大师发布了新的文献求助10
11秒前
星光点点发布了新的文献求助10
11秒前
12秒前
serendipity发布了新的文献求助10
12秒前
深情安青应助chenling采纳,获得10
12秒前
思源应助ivyjianjie采纳,获得10
12秒前
13秒前
13秒前
纪亦竹完成签到,获得积分10
14秒前
依旧发布了新的文献求助50
16秒前
科研混子发布了新的文献求助10
16秒前
英俊的铭应助难过绫采纳,获得10
19秒前
简单发布了新的文献求助10
19秒前
明亮不乐发布了新的文献求助10
20秒前
尼布丁应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
李健应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
尼布丁应助科研通管家采纳,获得10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736240
求助须知:如何正确求助?哪些是违规求助? 3280020
关于积分的说明 10018315
捐赠科研通 2996652
什么是DOI,文献DOI怎么找? 1644251
邀请新用户注册赠送积分活动 781857
科研通“疑难数据库(出版商)”最低求助积分说明 749548