PA-Pose: Partial point cloud fusion based on reliable alignment for 6D pose tracking

点云 人工智能 计算机科学 姿势 计算机视觉 刚性变换 RGB颜色模型 背景(考古学) 水准点(测量) 转化(遗传学) 地理 化学 生物化学 考古 大地测量学 基因
作者
Zhenyu Liu,Qide Wang,Daxin Liu,Jianrong Tan
出处
期刊:Pattern Recognition [Elsevier]
卷期号:148: 110151-110151 被引量:2
标识
DOI:10.1016/j.patcog.2023.110151
摘要

Learning-based 6-DOF (6D) pose tracking, serving as a basis for most real-time applications such as augmented reality and robot manipulation, receives attention transiting from 2D to 3D vision, with the popularity of depth sensors. However, the irregular nature of 3D point clouds challenges this task, especially since the lack of explicit alignments hinders the interaction and fusion between the observed point clouds. Therefore, this paper proposes a novel approach named PA-Pose to achieve 6D pose tracking in point clouds. It takes the forward-predicted dense correspondences within an overlap as reliable alignments, to guide the feature fusion of the partial-to-partial point clouds. Then, the relative transformation pose of adjacent observations is continuously regressed from the point-wisely fused features by confidence scoring, avoiding non-differentiable pose fitting. In addition, a shifted point convolution (SPConv) operation is introduced in the fusion process, to further promote the local context interaction of the observed point cloud pair in the expanded alignment field. Extensive experiments on two benchmark datasets (YCB-Video and YCBInEOAT) demonstrate that our method achieves state-of-the-art performance. Even though only 3D point clouds are taken as input, our PA-Pose is still competitive with those methods fully utilizing RGB-D information in the single view. Finally, experiments in the real scene for tracking industrial objects also validates the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助墨竹青浅采纳,获得10
刚刚
玖缈完成签到,获得积分10
1秒前
平常的谷蓝完成签到,获得积分20
2秒前
2秒前
香蕉觅云应助方hh采纳,获得10
3秒前
苍苍完成签到,获得积分10
4秒前
李健应助2331547774采纳,获得10
5秒前
MRBBN完成签到,获得积分10
7秒前
www完成签到,获得积分20
8秒前
古月发布了新的文献求助10
8秒前
8秒前
9秒前
我是老大应助LL采纳,获得10
10秒前
ASD123发布了新的文献求助10
10秒前
will214完成签到,获得积分20
10秒前
12秒前
13秒前
yrq完成签到,获得积分10
14秒前
14秒前
15秒前
yutonghuan发布了新的文献求助10
15秒前
bu完成签到,获得积分10
15秒前
Jisong完成签到,获得积分10
16秒前
希望天下0贩的0应助123采纳,获得30
16秒前
17秒前
科目三应助淡定的人生采纳,获得10
21秒前
21秒前
22秒前
22秒前
22秒前
aga完成签到,获得积分10
22秒前
落寞飞烟完成签到,获得积分10
23秒前
25秒前
Lin淋发布了新的文献求助10
25秒前
26秒前
D1fficulty完成签到,获得积分10
26秒前
123完成签到,获得积分10
26秒前
111发布了新的文献求助10
27秒前
27秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461413
求助须知:如何正确求助?哪些是违规求助? 3055059
关于积分的说明 9046383
捐赠科研通 2744996
什么是DOI,文献DOI怎么找? 1505792
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695281