PA-Pose: Partial point cloud fusion based on reliable alignment for 6D pose tracking

点云 人工智能 计算机科学 姿势 计算机视觉 刚性变换 RGB颜色模型 背景(考古学) 水准点(测量) 转化(遗传学) 地理 化学 生物化学 考古 大地测量学 基因
作者
Zhenyu Liu,Qide Wang,Daxin Liu,Jianrong Tan
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:148: 110151-110151 被引量:2
标识
DOI:10.1016/j.patcog.2023.110151
摘要

Learning-based 6-DOF (6D) pose tracking, serving as a basis for most real-time applications such as augmented reality and robot manipulation, receives attention transiting from 2D to 3D vision, with the popularity of depth sensors. However, the irregular nature of 3D point clouds challenges this task, especially since the lack of explicit alignments hinders the interaction and fusion between the observed point clouds. Therefore, this paper proposes a novel approach named PA-Pose to achieve 6D pose tracking in point clouds. It takes the forward-predicted dense correspondences within an overlap as reliable alignments, to guide the feature fusion of the partial-to-partial point clouds. Then, the relative transformation pose of adjacent observations is continuously regressed from the point-wisely fused features by confidence scoring, avoiding non-differentiable pose fitting. In addition, a shifted point convolution (SPConv) operation is introduced in the fusion process, to further promote the local context interaction of the observed point cloud pair in the expanded alignment field. Extensive experiments on two benchmark datasets (YCB-Video and YCBInEOAT) demonstrate that our method achieves state-of-the-art performance. Even though only 3D point clouds are taken as input, our PA-Pose is still competitive with those methods fully utilizing RGB-D information in the single view. Finally, experiments in the real scene for tracking industrial objects also validates the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助wyd采纳,获得10
1秒前
2秒前
eating完成签到,获得积分10
3秒前
生动凡梦完成签到,获得积分20
4秒前
4秒前
不瞌睡应助科研通管家采纳,获得40
4秒前
汉堡包应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
梁三柏应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
彭于晏应助yongjie采纳,获得30
5秒前
5秒前
橙汁得配曼妥思完成签到,获得积分10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
梁三柏应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
zfd完成签到,获得积分10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得30
5秒前
water应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
6秒前
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得50
6秒前
小蘑菇应助科研通管家采纳,获得30
6秒前
Akashi完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911110
求助须知:如何正确求助?哪些是违规求助? 4186617
关于积分的说明 13000608
捐赠科研通 3954386
什么是DOI,文献DOI怎么找? 2168285
邀请新用户注册赠送积分活动 1186699
关于科研通互助平台的介绍 1094037