Cortical thickness reductions associate with brain network architecture in major depressive disorder

神经科学 心理学 重性抑郁障碍 精神科 认知
作者
Wei Sheng,Qian Cui,Yuanhong Guo,Qin Tang,Yun‐Shuang Fan,Chong Wang,Jing Guo,Fengmei Lu,Zongling He,Huafu Chen
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:347: 175-182 被引量:1
标识
DOI:10.1016/j.jad.2023.11.037
摘要

Cortical thickness reductions in major depressive disorder are distributed across multiple regions. Research has indicated that cortical atrophy is influenced by connectome architecture on a range of neurological and psychiatric diseases. However, whether connectome architecture contributes to changes in cortical thickness in the same manner as it does in depression is unclear. This study aims to explain the distribution of cortical thickness reductions across the cortex in depression by brain connectome architecture. Here, we calculated a differential map of cortical thickness between 110 depression patients and 88 age-, gender-, and education level-matched healthy controls by using T1-weighted images and a structural network reconstructed through the diffusion tensor imaging of control group. We then used a neighborhood deformation model to explore how cortical thickness change in an area is influenced by areas structurally connected to it. We found that cortical thickness in the frontoparietal and default networks decreased in depression, regional cortical thickness changes were related to reductions in their neighbors and were mainly limited by the frontoparietal and default networks, and the epicenter was in the prefrontal lobe. Current findings suggest that connectome architecture contributes to the irregular topographic distribution of cortical thickness reductions in depression and cortical atrophy is restricted by and dependent on structural foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Grayball应助gg采纳,获得10
刚刚
刚刚
456发布了新的文献求助10
刚刚
1秒前
凤凰山发布了新的文献求助10
1秒前
独特的绿蝶完成签到,获得积分10
1秒前
1秒前
清歌扶酒发布了新的文献求助10
1秒前
东风完成签到,获得积分10
2秒前
3秒前
呆萌幼晴完成签到,获得积分10
3秒前
qinqiny完成签到 ,获得积分10
4秒前
4秒前
周小慧完成签到,获得积分20
4秒前
轻松的人龙完成签到,获得积分20
4秒前
小蘑菇应助yxf采纳,获得10
4秒前
1199关注了科研通微信公众号
4秒前
星辰大海应助小赞芽采纳,获得10
4秒前
郑开司09发布了新的文献求助10
5秒前
溪与芮行完成签到 ,获得积分10
5秒前
QS完成签到,获得积分10
5秒前
彭于晏应助Stanley采纳,获得10
7秒前
小二郎应助Stanley采纳,获得10
7秒前
扑通扑通通完成签到 ,获得积分10
7秒前
lgh完成签到,获得积分10
8秒前
研友_ZAVod8发布了新的文献求助10
8秒前
8秒前
打打应助贤惠的豪英采纳,获得10
9秒前
仙子狗尾巴花完成签到,获得积分10
9秒前
虎咪咪完成签到,获得积分10
9秒前
liyi发布了新的文献求助10
9秒前
悠旷完成签到 ,获得积分10
9秒前
dingdong完成签到,获得积分20
9秒前
9秒前
科研通AI5应助凤凰山采纳,获得10
9秒前
碱性沉默完成签到,获得积分10
9秒前
晓晖完成签到,获得积分10
10秒前
10秒前
www完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762