SCIRNet: Skeleton-based cattle interaction recognition network with inter-body graph and semantic priority

计算机科学 人工智能 图形 稳健性(进化) 交互网络 模式识别(心理学) 机器学习 人机交互 理论计算机科学 生物化学 基因 化学
作者
Yang Yang,Mizuka Komatsu,Kenji Oyama,Takenao Ohkawa
标识
DOI:10.1109/ijcnn54540.2023.10191592
摘要

Cattle are social and sensitive animals that are held together by an intricate social web. Following the inter-action between cattle is of great importance to the producer for effective herd management. To recognize the interaction, computer vision technology has been widely employed and current solutions in the fields are mainly dominated by frame-based approaches using CNNs and skeleton-based approaches using GCNs. Recently, skeleton-based interaction recognition has been gaining increasing attention due to its robustness to learn the representation of behavioral features. One crucial cue in recognizing an interaction is the interactive body parts. In this work, we propose a novel interaction recognition network applicable to cattle called SCIRNet with an inter-body graph generated from the respective skeleton graph of each cattle. More specifically, the inter-body graph enables the network to focus on interactive body parts by connecting some inter-body joints which are considered to be able to represent features of cattle interaction. In addition, we introduce a multi-stream architecture that accounts for relative information between interactive cattle to improve accuracy. In practice, we combine the graph feature with the image feature extracted from the interaction area to extract a visual representation of the interaction area, as well as the semantic priority obtained from our dataset to capture our prior knowledge of the relationship between the action and interaction of cattle. Qualitative and quantitative evaluation evidences the performance of our framework as an effective method to recognize cattle interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦章完成签到,获得积分10
刚刚
斯文败类应助激昂的不乐采纳,获得10
刚刚
大秦帝国发布了新的文献求助10
1秒前
1秒前
天天完成签到,获得积分20
1秒前
MIDANN完成签到,获得积分20
1秒前
OAO完成签到,获得积分10
1秒前
LY发布了新的文献求助10
2秒前
Kitty完成签到 ,获得积分20
2秒前
neverever完成签到,获得积分10
2秒前
2秒前
半疯半癫完成签到,获得积分20
3秒前
3秒前
3秒前
杨振发布了新的文献求助10
3秒前
4秒前
leisure完成签到,获得积分20
4秒前
小笨猪完成签到,获得积分10
5秒前
务实映之完成签到,获得积分10
5秒前
毛彬完成签到,获得积分20
5秒前
吃零食吃不下饭完成签到,获得积分10
5秒前
芜6完成签到,获得积分10
6秒前
墨扬完成签到,获得积分10
6秒前
应天亦发布了新的文献求助10
6秒前
爆米花应助Helly采纳,获得10
6秒前
鱼乐乐发布了新的文献求助10
7秒前
自由若剑发布了新的文献求助10
7秒前
wanci应助笑点低的不采纳,获得10
7秒前
aladi1011完成签到,获得积分10
7秒前
7秒前
烟酒生应助这个真不懂采纳,获得10
8秒前
ranran发布了新的文献求助10
8秒前
9秒前
peace完成签到,获得积分10
10秒前
田...完成签到,获得积分10
10秒前
10秒前
沄霄之上发布了新的文献求助10
10秒前
MIDANN发布了新的文献求助10
10秒前
10秒前
飘逸鸵鸟完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582