A fusion algorithm based on whale and grey wolf optimization algorithm for solving real-world optimization problems

算法 水准点(测量) 计算机科学 人口 数学优化 粒子群优化 基于群体的增量学习 分类 趋同(经济学) 数学 遗传算法 人口学 大地测量学 社会学 经济增长 经济 地理
作者
Qiliang Yang,Jinchuan Liu,Zezhong Wu,Shengyu He
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:146: 110701-110701
标识
DOI:10.1016/j.asoc.2023.110701
摘要

In order to better understand and analyze population-based meta-heuristic optimization algorithms, this paper proposed a new hybrid algorithm combined Lévy flight with modified Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO) , which is called LMWOAGWO to discard the dross and select the essence. Firstly, the population is initialized by using the uniform distribution space combined with the pseudo-reverse learning strategy, which lays the foundation for global search. Then, modifications were made to both WOA and GWO. For WOA algorithm, random adjustment control parameters strategy and different chaotic maps are used to adjust the main parameters of WOA to avoid the algorithm falling into local optimum in the later stage. For GWO algorithm, a new optimal solution is added to the grey wolf population to increase the optimal update position of the algorithm. On this basis, the dynamic weighting strategy is introduced to improve the convergence accuracy and convergence speed of the algorithm. Subsequently, new conditions were added during the WOA exploitation phase to formulate LMWOAGWO and the greedy strategy is used to retain better iteration update locations. Finally, Lévy flight is used to improve the global search ability of the algorithm. Extensive numerical experiments were conducted using 23 standard test benchmark functions, 25 CEC2005 functions, 15 popular benchmark functions and 10 CEC2019 functions to test the performance of LMWOAGWO compared with other well-known swarm optimization algorithms.Experimental and statistical results show that the performance of LMWOAGWO algorithm is better than many state-of-the-art algorithms. Then, 22 real-world optimization problems were used to further study the effectiveness of LMWOAGWO. Winners of CEC2020 Real World Single Objective Constraint Optimization Competition, such as iLSHADEϵ algorithm, sCMAgES algorithm, COLSHADE algorithm and EnMODE algorithm are selected as four comparison algorithms in real world optimization problems. Experimental results show that the proposed LMWOAGWO has the capability to solve real-world optimization problems. Finally, the application efficiency of LMWOAGWO in solving two basic optimization problems in wireless networks is briefly introduced, and compared with the original WOA and GWO. Simulation results show that the performance of the LMWOAGWO is better than WOA and GWO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助Messi采纳,获得10
刚刚
刚刚
研友_LOakVZ完成签到,获得积分10
刚刚
iNk应助没了蜡笔的小新采纳,获得20
1秒前
3秒前
3秒前
lixiniverson完成签到 ,获得积分10
3秒前
chcmuer完成签到,获得积分10
3秒前
林深完成签到,获得积分10
3秒前
哎呦发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
7秒前
8秒前
tx完成签到,获得积分10
9秒前
橙子味应助废物打工人采纳,获得10
10秒前
10秒前
10秒前
林深时见鹿完成签到,获得积分10
10秒前
11秒前
小橘发布了新的文献求助10
11秒前
11秒前
Promise完成签到 ,获得积分10
12秒前
12秒前
lmh发布了新的文献求助10
12秒前
13秒前
清竹完成签到,获得积分10
14秒前
14秒前
14秒前
JasonJayoma完成签到,获得积分10
14秒前
拼搏南霜发布了新的文献求助10
15秒前
AJ完成签到 ,获得积分10
18秒前
不想搞科研完成签到,获得积分10
18秒前
xiaozhou发布了新的文献求助10
19秒前
可爱的函函应助lililili采纳,获得10
19秒前
灵儿发布了新的文献求助10
20秒前
cz完成签到,获得积分10
21秒前
buno完成签到,获得积分10
23秒前
zar完成签到,获得积分10
24秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085834
求助须知:如何正确求助?哪些是违规求助? 2738698
关于积分的说明 7551384
捐赠科研通 2388489
什么是DOI,文献DOI怎么找? 1266613
科研通“疑难数据库(出版商)”最低求助积分说明 613512
版权声明 598591