A fusion algorithm based on whale and grey wolf optimization algorithm for solving real-world optimization problems

算法 水准点(测量) 计算机科学 人口 数学优化 粒子群优化 基于群体的增量学习 分类 趋同(经济学) 局部最优 数学 遗传算法 经济增长 社会学 人口学 经济 大地测量学 地理
作者
Qian Yang,Jinchuan Liu,Zezhong Wu,Shengyu He
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:146: 110701-110701 被引量:18
标识
DOI:10.1016/j.asoc.2023.110701
摘要

In order to better understand and analyze population-based meta-heuristic optimization algorithms, this paper proposed a new hybrid algorithm combined Lévy flight with modified Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO) , which is called LMWOAGWO to discard the dross and select the essence. Firstly, the population is initialized by using the uniform distribution space combined with the pseudo-reverse learning strategy, which lays the foundation for global search. Then, modifications were made to both WOA and GWO. For WOA algorithm, random adjustment control parameters strategy and different chaotic maps are used to adjust the main parameters of WOA to avoid the algorithm falling into local optimum in the later stage. For GWO algorithm, a new optimal solution is added to the grey wolf population to increase the optimal update position of the algorithm. On this basis, the dynamic weighting strategy is introduced to improve the convergence accuracy and convergence speed of the algorithm. Subsequently, new conditions were added during the WOA exploitation phase to formulate LMWOAGWO and the greedy strategy is used to retain better iteration update locations. Finally, Lévy flight is used to improve the global search ability of the algorithm. Extensive numerical experiments were conducted using 23 standard test benchmark functions, 25 CEC2005 functions, 15 popular benchmark functions and 10 CEC2019 functions to test the performance of LMWOAGWO compared with other well-known swarm optimization algorithms.Experimental and statistical results show that the performance of LMWOAGWO algorithm is better than many state-of-the-art algorithms. Then, 22 real-world optimization problems were used to further study the effectiveness of LMWOAGWO. Winners of CEC2020 Real World Single Objective Constraint Optimization Competition, such as iLSHADEϵ algorithm, sCMAgES algorithm, COLSHADE algorithm and EnMODE algorithm are selected as four comparison algorithms in real world optimization problems. Experimental results show that the proposed LMWOAGWO has the capability to solve real-world optimization problems. Finally, the application efficiency of LMWOAGWO in solving two basic optimization problems in wireless networks is briefly introduced, and compared with the original WOA and GWO. Simulation results show that the performance of the LMWOAGWO is better than WOA and GWO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
sy012139发布了新的文献求助30
1秒前
1秒前
领导范儿应助整齐的凝珍采纳,获得10
1秒前
拼搏向上发布了新的文献求助10
1秒前
慕青应助amin采纳,获得10
2秒前
木子李发布了新的文献求助10
3秒前
Liufgui应助Ado采纳,获得30
4秒前
cooler发布了新的文献求助10
4秒前
听星伴月完成签到,获得积分10
4秒前
4秒前
脑细胞发布了新的文献求助10
5秒前
Junning发布了新的文献求助10
5秒前
ttttt发布了新的文献求助10
6秒前
z620发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
合适鲂完成签到,获得积分10
9秒前
牛0254发布了新的文献求助30
9秒前
11秒前
我是老大应助章章采纳,获得10
11秒前
sy012139完成签到,获得积分10
11秒前
王子娇发布了新的文献求助10
12秒前
整齐的凝珍完成签到,获得积分10
12秒前
13秒前
14秒前
万能图书馆应助魔幻安筠采纳,获得10
15秒前
15秒前
16秒前
木子李完成签到,获得积分10
16秒前
hhhi发布了新的文献求助20
16秒前
王者归来完成签到,获得积分10
17秒前
18秒前
小彭发布了新的文献求助20
19秒前
amin发布了新的文献求助10
20秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999793
求助须知:如何正确求助?哪些是违规求助? 3539210
关于积分的说明 11276221
捐赠科研通 3277890
什么是DOI,文献DOI怎么找? 1807763
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142