MS-UNet-v2: Adaptive Denoising Method and Training Strategy for Medical Image Segmentation with Small Training Data

计算机科学 分割 编码器 特征(语言学) 人工智能 降噪 模式识别(心理学) 图像分割 语言学 操作系统 哲学
作者
Haoyuan Chen,Yufei Han,Xu Pin,Yanyi Li,Kuan Li,Jianping Yin
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.03686
摘要

Models based on U-like structures have improved the performance of medical image segmentation. However, the single-layer decoder structure of U-Net is too "thin" to exploit enough information, resulting in large semantic differences between the encoder and decoder parts. Things get worse if the number of training sets of data is not sufficiently large, which is common in medical image processing tasks where annotated data are more difficult to obtain than other tasks. Based on this observation, we propose a novel U-Net model named MS-UNet for the medical image segmentation task in this study. Instead of the single-layer U-Net decoder structure used in Swin-UNet and TransUnet, we specifically design a multi-scale nested decoder based on the Swin Transformer for U-Net. The proposed multi-scale nested decoder structure allows the feature mapping between the decoder and encoder to be semantically closer, thus enabling the network to learn more detailed features. In addition, we propose a novel edge loss and a plug-and-play fine-tuning Denoising module, which not only effectively improves the segmentation performance of MS-UNet, but could also be applied to other models individually. Experimental results show that MS-UNet could effectively improve the network performance with more efficient feature learning capability and exhibit more advanced performance, especially in the extreme case with a small amount of training data, and the proposed Edge loss and Denoising module could significantly enhance the segmentation performance of MS-UNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhengke924完成签到,获得积分10
刚刚
aaaaa完成签到,获得积分10
刚刚
GERRARD完成签到,获得积分10
刚刚
yuery发布了新的文献求助10
刚刚
街道办事部完成签到,获得积分10
刚刚
我是老大应助懿甜采纳,获得10
1秒前
牛牛牛发布了新的文献求助10
2秒前
OMR123完成签到,获得积分10
2秒前
CZF完成签到 ,获得积分10
2秒前
3秒前
CipherSage应助夏姬宁静采纳,获得10
3秒前
机智访琴完成签到,获得积分10
3秒前
Emma完成签到,获得积分10
4秒前
粗心的草莓完成签到,获得积分10
4秒前
贪玩海之完成签到,获得积分10
4秒前
Kirito完成签到,获得积分10
4秒前
科研牛人完成签到,获得积分10
5秒前
程smile笑完成签到,获得积分10
5秒前
Sun1c7完成签到,获得积分10
5秒前
丰富的复天完成签到,获得积分10
6秒前
柏林寒冬应助安然采纳,获得10
6秒前
Einson完成签到 ,获得积分10
6秒前
丙子哥发布了新的文献求助10
7秒前
FIN应助ZZZ采纳,获得30
7秒前
7秒前
syangZ完成签到,获得积分10
7秒前
7秒前
zxd完成签到,获得积分10
7秒前
spring079完成签到,获得积分10
8秒前
栗子完成签到 ,获得积分10
8秒前
sss2021完成签到,获得积分10
8秒前
8秒前
SYLH应助超级的长颈鹿采纳,获得30
8秒前
8秒前
9秒前
默默的巧荷完成签到,获得积分10
10秒前
yang完成签到,获得积分10
10秒前
yuki完成签到,获得积分10
10秒前
馒头完成签到,获得积分10
11秒前
苍耳发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874