MS-UNet-v2: Adaptive Denoising Method and Training Strategy for Medical Image Segmentation with Small Training Data

计算机科学 分割 编码器 特征(语言学) 人工智能 降噪 模式识别(心理学) 图像分割 语言学 操作系统 哲学
作者
Haoyuan Chen,Yufei Han,Xu Pin,Yanyi Li,Kuan Li,Jianping Yin
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.03686
摘要

Models based on U-like structures have improved the performance of medical image segmentation. However, the single-layer decoder structure of U-Net is too "thin" to exploit enough information, resulting in large semantic differences between the encoder and decoder parts. Things get worse if the number of training sets of data is not sufficiently large, which is common in medical image processing tasks where annotated data are more difficult to obtain than other tasks. Based on this observation, we propose a novel U-Net model named MS-UNet for the medical image segmentation task in this study. Instead of the single-layer U-Net decoder structure used in Swin-UNet and TransUnet, we specifically design a multi-scale nested decoder based on the Swin Transformer for U-Net. The proposed multi-scale nested decoder structure allows the feature mapping between the decoder and encoder to be semantically closer, thus enabling the network to learn more detailed features. In addition, we propose a novel edge loss and a plug-and-play fine-tuning Denoising module, which not only effectively improves the segmentation performance of MS-UNet, but could also be applied to other models individually. Experimental results show that MS-UNet could effectively improve the network performance with more efficient feature learning capability and exhibit more advanced performance, especially in the extreme case with a small amount of training data, and the proposed Edge loss and Denoising module could significantly enhance the segmentation performance of MS-UNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简简单单发布了新的文献求助10
1秒前
1秒前
lemon 1118发布了新的文献求助10
3秒前
二指断沧澜完成签到,获得积分10
5秒前
NexusExplorer应助lzc采纳,获得10
6秒前
日出发布了新的文献求助10
7秒前
积极慕梅应助guardcurry采纳,获得20
8秒前
充电宝应助飞飞鱼采纳,获得10
9秒前
orixero应助风中忆枫采纳,获得10
9秒前
小小完成签到,获得积分20
10秒前
搜集达人应助日出采纳,获得10
12秒前
斯人完成签到 ,获得积分10
12秒前
啦啦啦哟完成签到,获得积分10
12秒前
尚寻完成签到,获得积分10
13秒前
Andrew完成签到,获得积分10
13秒前
14秒前
思源应助shain采纳,获得10
15秒前
16秒前
precious完成签到 ,获得积分10
17秒前
fdxs发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
Jocelyn完成签到,获得积分10
19秒前
Jasper应助飞飞鱼采纳,获得10
19秒前
20秒前
aaronzhu1995发布了新的文献求助10
21秒前
haowu发布了新的文献求助10
22秒前
22秒前
APS完成签到,获得积分10
22秒前
风中忆枫发布了新的文献求助10
24秒前
ZSmile给ZSmile的求助进行了留言
25秒前
希望天下0贩的0应助jou采纳,获得10
25秒前
旷野天发布了新的文献求助10
26秒前
27秒前
无影随行完成签到,获得积分10
27秒前
小c完成签到 ,获得积分10
28秒前
28秒前
香蕉觅云应助鲤鱼青雪采纳,获得10
28秒前
奋斗枫完成签到,获得积分10
29秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157313
求助须知:如何正确求助?哪些是违规求助? 2808757
关于积分的说明 7878369
捐赠科研通 2467114
什么是DOI,文献DOI怎么找? 1313219
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919