亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MS-UNet-v2: Adaptive Denoising Method and Training Strategy for Medical Image Segmentation with Small Training Data

计算机科学 分割 编码器 特征(语言学) 人工智能 降噪 模式识别(心理学) 图像分割 哲学 语言学 操作系统
作者
Haoyuan Chen,Yufei Han,Xu Pin,Yanyi Li,Kuan Li,Jianping Yin
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.03686
摘要

Models based on U-like structures have improved the performance of medical image segmentation. However, the single-layer decoder structure of U-Net is too "thin" to exploit enough information, resulting in large semantic differences between the encoder and decoder parts. Things get worse if the number of training sets of data is not sufficiently large, which is common in medical image processing tasks where annotated data are more difficult to obtain than other tasks. Based on this observation, we propose a novel U-Net model named MS-UNet for the medical image segmentation task in this study. Instead of the single-layer U-Net decoder structure used in Swin-UNet and TransUnet, we specifically design a multi-scale nested decoder based on the Swin Transformer for U-Net. The proposed multi-scale nested decoder structure allows the feature mapping between the decoder and encoder to be semantically closer, thus enabling the network to learn more detailed features. In addition, we propose a novel edge loss and a plug-and-play fine-tuning Denoising module, which not only effectively improves the segmentation performance of MS-UNet, but could also be applied to other models individually. Experimental results show that MS-UNet could effectively improve the network performance with more efficient feature learning capability and exhibit more advanced performance, especially in the extreme case with a small amount of training data, and the proposed Edge loss and Denoising module could significantly enhance the segmentation performance of MS-UNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
华仔应助超级飞侠采纳,获得10
47秒前
51秒前
ANTianxu完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
99hz关注了科研通微信公众号
1分钟前
1分钟前
99hz发布了新的文献求助10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
LArry完成签到,获得积分10
1分钟前
2分钟前
微笑笑萍完成签到,获得积分10
2分钟前
2分钟前
2分钟前
jimmy_bytheway完成签到,获得积分0
3分钟前
健忘的溪灵完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
852应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
Noob_saibot完成签到,获得积分10
4分钟前
牛八先生完成签到,获得积分10
4分钟前
布干维尔岛耐摔王完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
TYGao发布了新的文献求助10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568741
求助须知:如何正确求助?哪些是违规求助? 3991231
关于积分的说明 12355514
捐赠科研通 3663277
什么是DOI,文献DOI怎么找? 2018813
邀请新用户注册赠送积分活动 1053218
科研通“疑难数据库(出版商)”最低求助积分说明 940791