Identification of chrysanthemum using hyperspectral imaging based on few-shot class incremental learning

高光谱成像 人工智能 鉴定(生物学) 班级(哲学) 模式识别(心理学) 弹丸 一次性 计算机科学 计算机视觉 机器学习 遥感 工程类 地理 生物 植物 化学 机械工程 有机化学
作者
Zeyi Cai,Mengyu He,Cheng Li,Hengnian Qi,Ruibin Bai,Jian Yang,Chu Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108371-108371 被引量:9
标识
DOI:10.1016/j.compag.2023.108371
摘要

Chrysanthemum, a traditional Chinese medicine, possesses diverse pharmacological effects with a myriad of origins and varieties. Due to the difficulty of acquiring and modeling all Chrysanthemum varieties comprehensively, it becomes imperative to establish models based on the available samples in order to swiftly identify newly emerging Chrysanthemum categories from a limited dataset. In this study, hyperspectral imaging combined with deep learning was exploited for the classification of fourteen Chrysanthemum categories by origin and variety. Leveraging the convolutional neural network, the few-shot class-incremental learning (class-IL) method was applied to the detection of few-shot Chrysanthemum categories. By employing a Replay training strategy, the challenges associated with severely sample-limited and unbalanced classes can be effectively addressed. When incrementally expanding from four to fourteen categories, with each new category consisting of only 30 samples, the achieved accuracy on the test dataset reached 80.13 %. This remarkable performance exhibited a narrow margin of 15.75 % compared to conventional supervised learning, which utilized an incremental training sample size nearly 100 times larger. This approach consistently outperforms conventional supervised learning methods, thereby showcasing its remarkable scalability. It facilitates the practical implementation of few-shot learning and deep learning models, providing a substantiated framework to tackle real-world scenarios in various domains using hyperspectral imaging and related techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醍醐不醒完成签到,获得积分10
刚刚
科研通AI2S应助Little_可爱采纳,获得10
刚刚
1秒前
ls发布了新的文献求助10
1秒前
拓跋雨梅应助科研通管家采纳,获得10
1秒前
1秒前
fifteen应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
2秒前
2秒前
活力小夏应助科研通管家采纳,获得50
2秒前
2秒前
竹筏过海应助科研通管家采纳,获得30
2秒前
zdl完成签到,获得积分10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
竹筏过海应助科研通管家采纳,获得30
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
遥远的尧发布了新的文献求助10
2秒前
zuanyhou应助科研通管家采纳,获得20
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
科研通AI2S应助dd采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
FashionBoy应助MY采纳,获得10
3秒前
suresure完成签到,获得积分10
3秒前
小运佳完成签到,获得积分20
3秒前
彭于晏应助cc20231022采纳,获得20
3秒前
下克斯应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
彭于彦祖应助莉莉啊采纳,获得30
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
安安安安完成签到,获得积分10
3秒前
3秒前
xt发布了新的文献求助10
3秒前
3秒前
醍醐不醒发布了新的文献求助10
3秒前
Fan完成签到,获得积分10
3秒前
余地完成签到 ,获得积分10
4秒前
H1lb2rt完成签到 ,获得积分10
4秒前
研友_n2QP2L完成签到,获得积分10
4秒前
红枫没有微雨怜完成签到 ,获得积分10
5秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257959
求助须知:如何正确求助?哪些是违规求助? 2899811
关于积分的说明 8307642
捐赠科研通 2569073
什么是DOI,文献DOI怎么找? 1395453
科研通“疑难数据库(出版商)”最低求助积分说明 653107
邀请新用户注册赠送积分活动 630946